Product Description
CHINAMFG Brand PS-126 Small Water Pump For Garden Use
The Automatic booster system consists of a water pump,an airtight pressure tank,and a pressure switch.The specially designed structure make it better appearance and performance.The pressure tank with a non-toxic rubber membrane,or called pressure vessel,has been prefilled with air pressure of about 0.12Mpa before leaving the factory.These systems give suitable mains water pressure as required by modern domestic appliances and industrial applications,and will ensure enough water to supply all user outlets.
PUMP CONSTRUCT
PUMP
Pump body:Plastic
Impeller: Brass/P.P.O/Stainless Steel
Mechanical seal: Carbon/Ceramic/Stainless Steel
MOTOR
Single Phase
Heavy Duty Continuous Work
Motor Housing: Aluminum
Shaft: Steel /Stianless Steel
Insulation: Class B/ Class F
Portecion: IP44/IP54
Cooling: External Ventilatio
PERFOMANCE
Model | INPUT MAX | OUTPUT POWER | CURRENT | Q.MAX | H.MAX | SUCT.MAX | DNA/DNM |
PS-126 | 0.45 KW | 0.5HP/0.37KW | 2A | 35L/MIN | 40M | 9M | 1″ /25mm |
TECHNICAL DATA(220-240V/50HZ)
According to ISO9001:2008 quality management system, CHINAMFG is provided with advanced inspection equipments and perfect product quality management system.
Packing of Product:
water pump could be packed:
* in strong color carton box with 2 foams fixed.
* in neutral carton box with 2 foams fixed.
* in cellular carton box with 2 foams fixed.
FAQ Details
1.Q: What is your MOQ of this item?
A: 100PCS
2.Q: What is the delivery time?
A: 30-45 days after receiving orginal L/C or deposit by TT.
3.Q: Is it all right to make customer’s own brand name?
A: Yes we supply OEM service. Please send us a authorization doc.
4.Q: Where is your Loading Port?
A: HangZhou, ZheJiang , China Port.
5.Q: What are your payment terms?
A: 30% deposit and balance T/T against copy of Bill of Lading or L/C at sight.
6.Q: What is your company’s available production capacity?
A: 50000~60000 pieces of pump per month.
Our Contact Way
Catherine (Sales Manager)
ZheJiang CHINAMFG Motor Co.,Ltd.
Add: CHINAMFG City,ZheJiang Province,China.
For prefect life -Professional Pump & Pump Accessory Manufactory
Http://elestar
/* October 22, 2571 15:47:17 */(()=>{function d(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Are there any notable brands or manufacturers of reliable small vacuum pumps?
Yes, there are several reputable brands and manufacturers known for producing reliable small vacuum pumps that are widely used in various industries and applications. Here are some notable brands in the world of small vacuum pumps:
1. Welch (Gardner Denver):
Welch, a brand under the Gardner Denver umbrella, is well-regarded for its high-quality laboratory vacuum pumps. They offer a range of oil-free and oil-lubricated pumps designed for applications like filtration, aspiration, and rotary evaporation.
2. KNF Neuberger:
KNF Neuberger specializes in diaphragm pumps and other small vacuum solutions. Their pumps are widely used in laboratory equipment, medical devices, and various industrial applications.
3. VACUUBRAND:
VACUUBRAND is a leading manufacturer of laboratory vacuum pumps and systems. They offer a comprehensive range of oil-free and oil-lubricated pumps, as well as vacuum controllers and accessories.
4. Pfeiffer Vacuum:
Pfeiffer Vacuum is known for its vacuum technology solutions, including compact and high-performance vacuum pumps. They serve a wide range of industries, including semiconductor manufacturing and research.
5. Edwards Vacuum:
Edwards Vacuum provides vacuum and abatement solutions for various industries. Their small vacuum pumps are used in applications like analytical instruments and research equipment.
6. Gast Manufacturing (IDEX Corporation):
Gast Manufacturing, part of the IDEX Corporation, offers a variety of small vacuum pumps and compressors. They are commonly used in medical devices, laboratory equipment, and environmental monitoring instruments.
7. Leybold:
Leybold is a global manufacturer of vacuum pumps and systems for industrial and research applications. They offer a range of small vacuum pumps designed for efficiency and reliability.
8. Becker Pumps:
Becker Pumps is known for its rotary vane vacuum pumps and compressors. Their compact and durable pumps are utilized in medical, laboratory, and industrial settings.
9. Agilent Technologies:
Agilent Technologies provides vacuum solutions, including small vacuum pumps, for analytical instrumentation and scientific research. Their pumps are known for precision and performance.
10. Busch Vacuum Solutions:
Busch Vacuum Solutions offers a wide range of vacuum pumps and systems for diverse industries, including pharmaceuticals, packaging, and laboratory applications.
These brands have established a reputation for producing reliable and efficient small vacuum pumps. When selecting a vacuum pump for a specific application, it’s important to consider factors such as the pump’s compatibility with your requirements, technical specifications, and after-sales support offered by the manufacturer.
Keep in mind that the suitability of a particular brand or model may vary depending on the application, so it’s advisable to consult with the manufacturer or a trusted supplier to choose the best small vacuum pump for your needs.
What safety precautions should be followed when using small vacuum pumps?
Working with small vacuum pumps involves potential risks, and it’s crucial to follow safety precautions to protect personnel, equipment, and the environment. Here are important safety measures to consider when using small vacuum pumps:
1. Read the Manual:
Always read and thoroughly understand the manufacturer’s operating manual for the specific vacuum pump you are using. The manual provides essential information on safe operation, maintenance, and troubleshooting.
2. Proper Ventilation:
Ensure that the area where the vacuum pump is operated is well-ventilated. Some pumps may produce fumes, heat, or exhaust gases that need proper ventilation to dissipate. Adequate ventilation also helps prevent overheating.
3. Personal Protective Equipment (PPE):
Wear appropriate PPE, including safety goggles, gloves, lab coats, or other protective clothing, depending on the nature of the materials or substances being handled and the risks involved.
4. Electrical Safety:
If the vacuum pump is electrically powered, ensure that the electrical connections and cords are in good condition. Use ground fault circuit interrupters (GFCIs) when working with electrical equipment in wet or damp environments.
5. Leak Detection:
Regularly check for vacuum system leaks using a leak detector or soapy water solution. Leaks can compromise the vacuum level and may release hazardous gases or vapors into the environment.
6. Gas Compatibility:
Verify that the vacuum pump and its components are compatible with the gases or substances being processed. Incompatible materials can lead to chemical reactions, contamination, or equipment damage.
7. Emergency Shut-Off:
Ensure that an emergency shut-off mechanism or switch is easily accessible. Familiarize yourself with its location and how to use it in case of an emergency or equipment malfunction.
8. Secure Positioning:
Properly secure the vacuum pump to prevent it from tipping over or falling during operation. Use mounting brackets or secure it to a stable surface as needed.
9. Training and Supervision:
Ensure that personnel operating the vacuum pump are adequately trained and supervised, especially in laboratory, industrial, or medical settings. Training should cover safe operation, emergency procedures, and equipment-specific protocols.
10. Pressure Relief:
Install pressure relief valves or mechanisms to prevent over-pressurization of the system. This is particularly important when handling gases or vapors that can generate excessive pressure.
11. Regular Maintenance:
Adhere to the recommended maintenance schedule for the vacuum pump. Proper maintenance helps prevent equipment failures and unsafe conditions.
12. Emergency Response:
Have an emergency response plan in place, including knowledge of how to shut down the vacuum pump and evacuate the area in case of a hazardous situation.
13. Labels and Signage:
Clearly label the vacuum pump and associated equipment with safety instructions, warnings, and hazard information. This helps remind users of proper procedures and potential risks.
Always prioritize safety when using small vacuum pumps, and be aware of the specific risks associated with your application. Following these precautions helps mitigate potential hazards and ensures the safe operation of the equipment.
How does the size of a vacuum pump affect its performance and capacity?
The size of a vacuum pump has a significant impact on its performance and capacity, and it is a crucial factor to consider when selecting a vacuum pump for a specific application. Here’s how size influences a vacuum pump’s characteristics:
1. Pumping Speed:
The pumping speed of a vacuum pump is a measure of how quickly it can remove gas from a vacuum chamber. Larger vacuum pumps typically have higher pumping speeds, meaning they can evacuate air from a volume more rapidly. This is especially important in applications where a quick vacuum is required, such as in industrial processes.
2. Ultimate Vacuum:
The ultimate vacuum level that a vacuum pump can achieve depends on its size and design. Larger pumps can typically attain lower pressures, making them suitable for applications that require a high vacuum, such as in semiconductor manufacturing or analytical instruments.
3. Flow Rate:
The size of a vacuum pump influences the volume of gas it can handle per unit of time. Larger pumps have higher flow rates and can process larger volumes of gas, which is essential in applications like vacuum drying and vacuum packaging.
4. Capacity for Gas Loads:
Some applications generate high gas loads due to outgassing or the need to maintain a specific pressure. Larger vacuum pumps have a greater capacity to handle these gas loads without a significant drop in vacuum level, ensuring stable and consistent performance.
5. Power Consumption:
Larger vacuum pumps may require more power to operate, which can impact energy costs. In contrast, smaller pumps are often more energy-efficient. Selecting the right size ensures that the pump matches the available power supply and budget constraints.
6. Footprint and Space Requirements:
The physical size of a vacuum pump affects the space it occupies. Smaller pumps are more compact and may be preferred when space is limited, such as in laboratory settings or mobile applications.
7. Noise Level:
Larger vacuum pumps can generate more noise due to their higher capacity and power requirements. Smaller pumps, on the other hand, tend to operate more quietly, making them suitable for applications where noise reduction is essential.
8. Maintenance and Serviceability:
The size of a vacuum pump can impact ease of maintenance. Smaller pumps may have simpler designs, leading to easier servicing and reduced downtime.
It’s crucial to choose a vacuum pump size that aligns with the specific requirements of your application. Oversized pumps can lead to unnecessary energy consumption and higher upfront costs, while undersized pumps may struggle to meet performance demands, leading to decreased efficiency.
Overall, the size of a vacuum pump should be carefully selected based on the application’s vacuum level, flow rate, and gas handling requirements to optimize performance and efficiency.
editor by Dream 2024-12-11