Product Description
Product Description
2XZ Series Rotary Vane Vacuum Pump
Overview
2XZ series vacuum pump has bipolar direct connecting structure, the working performance Is consisted of high pressure and low pressure grades. The inhalant hole Connects with vacuum equipment, the air in the container will be inhaled and exhausted Greatly while running.
This series of pumps are elementary equipment for pumping air from sealed vassels. It can be used alone, also can be used as the fore pump, process pump or titanium pump of booster pump, diffusion pump, and molecular pump. The pumps are also used in making electrical vacuum cases, vacuum jointing, printing, photoengraving, food packaging, vacuum forming, refrigeration equipment repair and instruments or a set of equipments in laboratory, It is widely used in aerospace, semiconductor , coating , food packaging,drying machines, refrigeration equipment, scientific research, medical treatment, electronics, chemicals, medicine and laboratory or laboratory of universities and colleges.
Features
a. Small volume, low weight and low noise
b. Equipped with gas ballast valve to pump a little water vapor.
c. Equipped with oil anti-suck back device.
d. 2XZ-2 with small caliber, 2XZ-4 pump with vacuum drying oven, freezing dry machine and printing machine.
e.Equipped with small caliber transforming joints and KF joints.
Product Parameters
Parameters/Model |
2XZ-0.25 |
2XZ-0.5 |
2XZ-1 |
2XZ-2 |
2XZ-4 |
|
Pumping speedm3/h(L/S) |
50(HZ) |
0.9(0.25) |
1.8(0.5) |
3.6(1) |
7.2(2) |
14.4(4) |
60(HZ) |
1.1(0.3) |
2.1(0.6) |
4.3(1.2) |
8.6(2.4) |
17.2(4.8) |
|
Ultimate pressure (Pa) |
Partial pressure |
≤6×10-1 |
≤6×10-2 |
≤6×10-2 |
≤6×10-2 |
≤6×10-2 |
Total pressure |
≤6.5 |
≤1.33 |
≤1.33 |
≤1.33 |
≤1.33 |
|
Rotary speed(r/min) |
50(HZ) |
1400 |
1400 |
1400 |
1400 |
1400 |
60(HZ) |
1720 |
1720 |
1720 |
1720 |
1720 |
|
Moter power(kw) |
0.12 |
0.18 |
0.25 |
0.37 |
0.55 |
|
Voltage(V) |
220 |
220/380 |
220/380 |
220/380 |
220/380 |
|
Inlet diam(O.D.)(mm) |
φ15 |
φ20 |
φ20 |
φ30 |
φ30 |
|
Noise level(dBA) |
63 |
65 |
65 |
68 |
68 |
|
Oil capacity(L) |
0.5 |
0.6 |
0.7 |
1 |
1.2 |
|
Dimensions(mm) |
403×130×240 |
447×168×260 |
469×168×260 |
514×168×282 |
565×168×282 |
|
Gross weight/Net weight(Kg) |
16/15 |
17/16 |
18/17 |
22/20 |
24/22 |
Detailed Photos
Packaging & Shipping
Packing Details : One pump in One plywood case
Delivery Details : 30 days after order confirmation
Standard package without original wood, no fumigation needed.
Company Profile
ZheZheJiang oto Pump Industrial Co., Ltd. is a professional pump manufacturer integrating R&D, manufacturing, sales and service as a whole, which has been certified by ISO9001 international quality management system.
Located in Xihu (West Lake) Dis.a Industrial Park, ZheJiang , CHINAMFG Pump Industrial possesses 2 manufacturing bases in ZheJiang and ZHangZhoug. Since our inception, CHINAMFG Pump Industrial has been committed to the innovation and development of various pumps. Our leading products include self-priming trash pump, centrifugal pump, submersible pump, diaphragm pump, vacuum pump, diesel pump, fire pump, etc.
FAQ
Q: Can I chat with you online? What is your company official website?
Q: What type of company CHINAMFG is?
A: CHINAMFG is a manufacture and trading company, has factories in ZheJiang and ZHangZhoug, with export and import license.
Q: What kinds of pumps do you supply?
A: Our products including self-priming trash pump, centrifugal pump, diaphragm pump, submersible pump, chemical pump, oil pump, diesel pump, fire fighting pump, etc.
Q: What is your payment terms?
A: Alibaba Trade Assurance, Western Union, Paypal, T/T, L/C, etc.
Q: Can you provide OEM, ODM service?
A: Yes. We have factories in ZheJiang and ZHangZhoug, we can make products according to your requirements.
Q: Why should we buy from you?
A: We are committed to provide best quality products at minimum delivery time and competitive price. We believe this is what customer wants. We are satified until customers are.
Q: What is your warranty period?
A: We provide 1 year of unconditional warranty on our products for the manufacturing defects.
Q: What about delivery time?
A: Normally our production time is within 2 weeks. Please confirm before order.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | 1 Year |
---|---|
Warranty: | 1 Year |
Acting Form: | Single-Acting |
Type: | Centrifugal Pump |
Displacement: | Variable Pump |
Performance: | No Leak |
Samples: |
US$ 200/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
Where can individuals or businesses source small vacuum pumps for various applications?
Individuals and businesses looking to source small vacuum pumps for a wide range of applications have several options to consider. Here are common sources for acquiring small vacuum pumps:
1. Manufacturers and Authorized Dealers:
Contacting the manufacturers directly or their authorized dealers is often a reliable way to purchase small vacuum pumps. Manufacturers typically offer a wide selection of models and provide technical support. Authorized dealers can assist with product selection and may offer competitive pricing.
2. Industrial Suppliers:
Industrial supply companies and distributors often carry a variety of vacuum pumps. These suppliers cater to a range of industries, including manufacturing, research, and laboratories. They can provide competitive pricing and may offer bulk purchase discounts.
3. Laboratory Equipment Suppliers:
For those seeking vacuum pumps for laboratory or scientific applications, specialized laboratory equipment suppliers are a valuable resource. They offer pumps designed for precise and controlled vacuum needs.
4. Online Marketplaces:
Online marketplaces like Amazon, eBay, and Alibaba feature a wide array of small vacuum pumps from various manufacturers and sellers. Buyers can compare prices, read reviews, and often find both new and used pumps.
5. HVAC and Refrigeration Suppliers:
Heating, ventilation, air conditioning, and refrigeration (HVAC/R) suppliers may carry vacuum pumps suitable for HVAC system maintenance and refrigeration applications. These suppliers are often found locally.
6. Scientific and Research Institutions:
Scientific and research institutions occasionally sell surplus equipment, including vacuum pumps, through online auctions or specialized surplus equipment vendors.
7. Rental Services:
For short-term or occasional use, renting small vacuum pumps can be a cost-effective option. Equipment rental companies may offer various pump types for temporary applications.
8. Online Manufacturer Websites:
Visiting the official websites of vacuum pump manufacturers provides access to comprehensive product information, specifications, and contact details for sales and support.
9. Trade Shows and Exhibitions:
Attending industry-specific trade shows, exhibitions, and conferences can be an excellent opportunity to connect with manufacturers, distributors, and suppliers in person. It allows for hands-on product evaluation and networking.
10. Classified Ads and Auctions:
Classified advertisement websites and auction platforms may feature used vacuum pumps for sale. Buyers should exercise caution and thoroughly assess the condition of used equipment.
When sourcing small vacuum pumps, individuals and businesses should consider factors such as the pump’s specifications, warranty, customer support, and the reputation of the supplier or seller. It’s essential to choose a source that aligns with the specific requirements of the application and ensures the reliability and performance of the vacuum pump.
What factors should one consider when choosing a small vacuum pump for a specific task?
Choosing the right small vacuum pump for a specific task is essential to ensure optimal performance and efficiency. Several factors should be taken into account when making your selection:
1. Vacuum Level Requirements:
Determine the required vacuum level for your application. Some tasks may require a high vacuum level, while others can be accomplished with a lower vacuum. The pump’s ultimate vacuum capability should match your needs.
2. Flow Rate:
Consider the volume of gas or air that needs to be evacuated or processed per unit of time. Choose a pump with an adequate flow rate to meet your application’s requirements. Insufficient flow can lead to slow or inefficient processes.
3. Type of Gas:
Identify the type of gas or vapor you will be handling. Some gases may be corrosive, reactive, or incompatible with certain pump materials. Ensure that the pump you select is compatible with the gases involved in your task.
4. Contamination Sensitivity:
If your application demands a clean and contamination-free vacuum environment, consider pumps that operate without oil lubrication, such as diaphragm or scroll pumps. These pumps are suitable for applications like analytical instruments and cleanroom environments.
5. Power Source:
Determine the available power source for your pump. Small vacuum pumps can be electric, battery-powered, pneumatic, or even hand-operated. Choose a power source that aligns with your application’s requirements and availability.
6. Portability:
If mobility is essential, opt for a compact and lightweight vacuum pump. Battery-powered or pneumatic pumps are often chosen for portable applications. Consider the size and weight of the pump relative to the device or equipment it will be integrated into.
7. Noise Level:
Assess the noise level generated by the pump. Some small vacuum pumps operate quietly, which is advantageous in noise-sensitive environments like laboratories and medical facilities. Low-noise pumps are also suitable for handheld devices.
8. Maintenance Requirements:
Consider the maintenance needs of the pump. Some pumps have simpler designs and require less frequent servicing. Evaluate factors such as filter replacement, lubrication, and ease of access for maintenance tasks.
9. Cost and Budget:
Take into account your budget constraints. Small vacuum pumps come in a range of price points, so choose one that offers the best balance between performance and cost while meeting your specific requirements.
10. Environmental Considerations:
Consider environmental factors, especially if your application is in a sensitive or regulated area. Assess energy efficiency, emissions, and any environmental certifications or standards that the pump may need to meet.
11. Application Specifics:
Finally, closely examine the unique requirements of your specific task. Each application may have its own considerations, so tailor your choice to suit the precise demands of your project or process.
By carefully evaluating these factors, you can select the most appropriate small vacuum pump for your specific task, ensuring that it performs efficiently and effectively.
What are the advantages of using a small vacuum pump in specific applications?
Small vacuum pumps offer various advantages in specific applications across multiple industries. These advantages make them valuable tools for achieving specific tasks efficiently. Here are some key advantages:
1. Portability:
Small vacuum pumps are compact and lightweight, making them easy to transport and use in various locations. Their portability is especially beneficial for fieldwork, mobile applications, and situations where mobility is essential.
2. Precision and Control:
Small vacuum pumps provide precise control over the vacuum level, allowing for accurate and controlled processes. This level of control is crucial in scientific research, medical procedures, and manufacturing applications requiring fine-tuned vacuum conditions.
3. Oil-Free Operation:
Many small vacuum pumps, such as diaphragm pumps, operate without the need for oil lubrication. This oil-free operation is essential in applications where oil contamination is undesirable, such as in laboratories and cleanroom environments.
4. Low Maintenance:
Compared to larger industrial vacuum systems, small vacuum pumps often have simpler maintenance requirements. They are designed for ease of use and may require less frequent servicing, reducing downtime and maintenance costs.
5. Energy Efficiency:
Small vacuum pumps are energy-efficient, especially when equipped with features like variable speed drives (VSDs). VSDs allow the pump to adjust its speed based on demand, minimizing energy consumption and reducing operational costs.
6. Quiet Operation:
Some small vacuum pumps, such as scroll pumps and diaphragm pumps, operate quietly. This characteristic is advantageous in environments where noise levels need to be minimized, such as in laboratories, medical facilities, and offices.
7. Versatility:
Small vacuum pumps can be used in a wide range of applications, including vacuum filtration, rotary evaporation, sample concentration, and air sampling. Their versatility makes them suitable for diverse industries, from pharmaceuticals to electronics manufacturing.
8. Cost-Effectiveness:
Small vacuum pumps are often more cost-effective than larger industrial vacuum systems. They offer a balance between performance and affordability, making them accessible to a broad range of users and applications.
It’s important to note that the advantages of using small vacuum pumps are application-specific. To maximize the benefits, it’s essential to select the right type of pump that matches the requirements and constraints of the specific application.
editor by Dream 2024-05-17
China Standard 4kw 160m3/H Small Oil Lubrication Rotary Vane Vacuum Pump supplier
Product Description
SRV0160 Single-stage,Oil-lubricated rotary vane vacuum pump,rotary piston pump,rotary vane blower
Pransch air rotary vane pumps have been the most popular pumps for generating low and medium vacuum for many years now. They are sturdy and have a long life, whether they are used as backing pumps to generate the backing pressure called for by turbopumps, or as a single standalone pump. Rotary vane pumps belong to the family of displacement pumps and convey a virtually steady low-pulsation suction volume flow, irrespective of the type of gas used. They work on the principle of an eccentrically supported rotor revolving in a housing, and have 2 or more movable vanes. Every CHINAMFG rotary vane vacuum pump is oil-lubricated. Special vacuum oils, also known as operating fluids, are responsible for insulating and lubricating components, resulting in very low final pressures. The oil lubrication also ensures an extremely long lifetime, even in continuous operation.
- For industrial applications – very powerful
- Three-phase universal motor available, allowing an almost CHINAMFG network coverage
- Integrated oil mist separator with highest degree of separation
- Special vane material for a long service life
Technical data | Frequency | SRV 0160 |
Pumping Speed | 50Hz | 160m3/h |
60Hz | 190m3/h | |
Ultimate pressure | mbar | 0.1 |
Diameter | “ | G2″/G2″ |
Voltage | 50Hz | 345-415/600-720v |
60Hz | 380-480/660-720v | |
Nominal motor rating | Kw | 4 |
Current | 50Hz | 9.0/5.2A |
60Hz | 9.4/5.2A | |
Nominal speed | rpm | 1455/1720 |
Sound | dB(A) | 67 |
Oil (max) | L | 6 |
Weight(w/o oil) | Kg | 149 |
Single-stage rotary vane pumps from CHINAMFG Air have long been some of the most widely used products for processes in the low and medium vacuum range. Their long life and pumping speed, irrespective of the gas used, are the outstanding properties of this pump.
Typical applications are found in widely ranging sectors:
- Analytics (mass spectrometry, electron microscopy)
- Coating technology (surface protection, decorative films, display units, monitor screens)
- Vacuum metallurgy (vacuum soldering, vacuum sintering, vacuum alloys, CHINAMFG construction)
- Leak detection technology (vacuum systems, automotive tanks, airbag cartridges, packaging)
- Lighting industry (light bulb manufacture)
- Drying industry (vacuum drying, transformer drying)
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Oil or Not: | Oil |
---|---|
Structure: | Rotary Vacuum Pump |
Exhauster Method: | Kinetic Vacuum Pump |
Vacuum Degree: | Vacuum |
Work Function: | Maintain the Pump |
Working Conditions: | Dry |
Customization: |
Available
|
|
---|
Are there any notable brands or manufacturers of reliable small vacuum pumps?
Yes, there are several reputable brands and manufacturers known for producing reliable small vacuum pumps that are widely used in various industries and applications. Here are some notable brands in the world of small vacuum pumps:
1. Welch (Gardner Denver):
Welch, a brand under the Gardner Denver umbrella, is well-regarded for its high-quality laboratory vacuum pumps. They offer a range of oil-free and oil-lubricated pumps designed for applications like filtration, aspiration, and rotary evaporation.
2. KNF Neuberger:
KNF Neuberger specializes in diaphragm pumps and other small vacuum solutions. Their pumps are widely used in laboratory equipment, medical devices, and various industrial applications.
3. VACUUBRAND:
VACUUBRAND is a leading manufacturer of laboratory vacuum pumps and systems. They offer a comprehensive range of oil-free and oil-lubricated pumps, as well as vacuum controllers and accessories.
4. Pfeiffer Vacuum:
Pfeiffer Vacuum is known for its vacuum technology solutions, including compact and high-performance vacuum pumps. They serve a wide range of industries, including semiconductor manufacturing and research.
5. Edwards Vacuum:
Edwards Vacuum provides vacuum and abatement solutions for various industries. Their small vacuum pumps are used in applications like analytical instruments and research equipment.
6. Gast Manufacturing (IDEX Corporation):
Gast Manufacturing, part of the IDEX Corporation, offers a variety of small vacuum pumps and compressors. They are commonly used in medical devices, laboratory equipment, and environmental monitoring instruments.
7. Leybold:
Leybold is a global manufacturer of vacuum pumps and systems for industrial and research applications. They offer a range of small vacuum pumps designed for efficiency and reliability.
8. Becker Pumps:
Becker Pumps is known for its rotary vane vacuum pumps and compressors. Their compact and durable pumps are utilized in medical, laboratory, and industrial settings.
9. Agilent Technologies:
Agilent Technologies provides vacuum solutions, including small vacuum pumps, for analytical instrumentation and scientific research. Their pumps are known for precision and performance.
10. Busch Vacuum Solutions:
Busch Vacuum Solutions offers a wide range of vacuum pumps and systems for diverse industries, including pharmaceuticals, packaging, and laboratory applications.
These brands have established a reputation for producing reliable and efficient small vacuum pumps. When selecting a vacuum pump for a specific application, it’s important to consider factors such as the pump’s compatibility with your requirements, technical specifications, and after-sales support offered by the manufacturer.
Keep in mind that the suitability of a particular brand or model may vary depending on the application, so it’s advisable to consult with the manufacturer or a trusted supplier to choose the best small vacuum pump for your needs.
Can you describe the typical power sources for small vacuum pumps?
Small vacuum pumps can be powered by various sources, depending on their design, size, and intended applications. Here are the typical power sources for small vacuum pumps:
1. Electric Power:
Most small vacuum pumps are electrically powered and use standard alternating current (AC) or direct current (DC) sources. Electric vacuum pumps are versatile and widely used in laboratory equipment, industrial processes, and portable devices. They can be plugged into wall outlets or connected to DC power sources such as batteries or power supplies.
2. Battery Power:
Portable and handheld devices often incorporate battery-powered small vacuum pumps. These pumps are ideal for applications where mobility is crucial, such as fieldwork, medical instruments, and handheld vacuum aspirators. Batteries can be rechargeable or disposable, depending on the device’s requirements.
3. Compressed Air:
In some applications, small vacuum pumps are driven by compressed air or other gases. These pumps are known as pneumatic or air-operated vacuum pumps. They are commonly used in industrial automation, vacuum gripping systems, and manufacturing processes where compressed air is readily available.
4. Hydraulic Power:
In specialized applications, small vacuum pumps can be hydraulically powered. These pumps are often used in systems where hydraulic power sources are already in use. They are less common than electric or pneumatic options but find application in specific industries like automotive manufacturing.
5. Solar Power:
In remote or off-grid locations, small vacuum pumps can be powered by solar panels and photovoltaic systems. Solar-powered vacuum pumps are environmentally friendly and energy-efficient, making them suitable for sustainable and remote applications.
6. Hand Cranks:
For ultra-portable and emergency situations, some small vacuum pumps can be hand-operated using a manual hand crank. These pumps are typically compact and lightweight, making them suitable for backup or low-volume vacuum needs.
7. Engine-Driven:
In certain industrial and automotive applications, small vacuum pumps can be driven by an internal combustion engine. These pumps are commonly used in power brake boosters and emission control systems in vehicles.
The choice of power source for a small vacuum pump depends on factors such as the application’s mobility requirements, availability of power sources, energy efficiency goals, and environmental considerations. Manufacturers design vacuum pumps to be compatible with various power sources to meet diverse application needs.
What are the advantages of using a small vacuum pump in specific applications?
Small vacuum pumps offer various advantages in specific applications across multiple industries. These advantages make them valuable tools for achieving specific tasks efficiently. Here are some key advantages:
1. Portability:
Small vacuum pumps are compact and lightweight, making them easy to transport and use in various locations. Their portability is especially beneficial for fieldwork, mobile applications, and situations where mobility is essential.
2. Precision and Control:
Small vacuum pumps provide precise control over the vacuum level, allowing for accurate and controlled processes. This level of control is crucial in scientific research, medical procedures, and manufacturing applications requiring fine-tuned vacuum conditions.
3. Oil-Free Operation:
Many small vacuum pumps, such as diaphragm pumps, operate without the need for oil lubrication. This oil-free operation is essential in applications where oil contamination is undesirable, such as in laboratories and cleanroom environments.
4. Low Maintenance:
Compared to larger industrial vacuum systems, small vacuum pumps often have simpler maintenance requirements. They are designed for ease of use and may require less frequent servicing, reducing downtime and maintenance costs.
5. Energy Efficiency:
Small vacuum pumps are energy-efficient, especially when equipped with features like variable speed drives (VSDs). VSDs allow the pump to adjust its speed based on demand, minimizing energy consumption and reducing operational costs.
6. Quiet Operation:
Some small vacuum pumps, such as scroll pumps and diaphragm pumps, operate quietly. This characteristic is advantageous in environments where noise levels need to be minimized, such as in laboratories, medical facilities, and offices.
7. Versatility:
Small vacuum pumps can be used in a wide range of applications, including vacuum filtration, rotary evaporation, sample concentration, and air sampling. Their versatility makes them suitable for diverse industries, from pharmaceuticals to electronics manufacturing.
8. Cost-Effectiveness:
Small vacuum pumps are often more cost-effective than larger industrial vacuum systems. They offer a balance between performance and affordability, making them accessible to a broad range of users and applications.
It’s important to note that the advantages of using small vacuum pumps are application-specific. To maximize the benefits, it’s essential to select the right type of pump that matches the requirements and constraints of the specific application.
editor by Dream 2024-05-14
China Custom 300m3/H Rotary Vane Vacuum Pump vacuum pump oil near me
Product Description
Oil Lubricated Rotary Vane Vacuum Pump (RH0300)
Product Description
A typical rotary vacuum pump is comprised of a housing, a rotor and a series of radially moving vanes, which come in dry-running or lubricated versions (the latter are the most commonly used in the majority of industrial applications). The rotor is generally the only continuously moving vane vacuum pump part. There’s also a working chamber inside the housing, which is divided into 2 separate compartments by the rotor and vanes. Many vane vacuum pumps also include an inlet valve as a safety feature.
Rotary vane vacuum pumps are available in single-stage and two-stage versions. The stages refer to the number of times that compression actually occurs. Two-stage pumps are also able to attain a lower pressure than single-stage pumps, due to the fact that gas is only admitted during the high pressure stage.
Rotary vane vacuum pumps are ideally suited for a wide range of low and medium vacuum applications such as general and chemical laboratory, analytics, CZPT drying, process engineering and more. A rotary vane pump works via positive displacement, which is when volumes of air or gas are confined within a closed space and are compressed when the space is mechanically reduced.
Product Parameters
Product Model | 50/60Hz | RH0300 |
Pumping Speed | 50Hz | 300m³/H |
60Hz | 360m³/H | |
Ultimate Pressure | mbar | 0.1 |
Inlet Diameter | G2” | |
Voltage | 50Hz | 345-415/600-720V |
60Hz | 380-480/660-720V | |
Motor Power | kW | 7.5 |
Current (A) | 50Hz | 16.7/9.6 |
60Hz | 17.3/11.0 | |
Rotate Speed | r/min | 1455/1720 |
Noise Level | dB | 72 |
Oil Volume | L | 8.0 |
Net Weight | kg | 193 |
Detailed Photos
Installation Instructions
Certifications
Company Profile
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Oil or Not: | Oil |
---|---|
Structure: | Rotary Vacuum Pump |
Exhauster Method: | Kinetic Vacuum Pump |
Vacuum Degree: | High Vacuum |
Work Function: | Maintain the Pump |
Working Conditions: | Dry |
Samples: |
US$ 3150/Set
1 Set(Min.Order) | |
---|
Customization: |
Available
|
|
---|
Types of vacuum pumps
A vacuum pump is a device that draws gas molecules from a sealed volume and leaves a partial vacuum in its wake. Its job is to create a relative vacuum within a specific volume or volume. There are many types of vacuum pumps, including centrifugal, screw and diaphragm.
Forward centrifugal pump
Positive displacement centrifugal vacuum pumps are one of the most commonly used pump types in the oil and gas industry. Their efficiency is limited to a range of materials and can handle relatively high solids concentrations. However, using these pumps has some advantages over other types of pumps.
Positive displacement pumps have an enlarged cavity on the suction side and a reduced cavity on the discharge side. This makes them ideal for applications involving high viscosity fluids and high pressures. Their design makes it possible to precisely measure and control the amount of liquid pumped. Positive displacement pumps are also ideal for applications requiring precise metering.
Positive displacement pumps are superior to centrifugal pumps in several ways. They can handle higher viscosity materials than centrifuges. These pumps also operate at lower speeds than centrifugal pumps, which makes them more suitable for certain applications. Positive displacement pumps are also less prone to wear.
Positive displacement vacuum pumps operate by drawing fluid into a chamber and expanding it to a larger volume, then venting it to the atmosphere. This process happens several times per second. When maximum expansion is reached, the intake valve closes, the exhaust valve opens, and fluid is ejected. Positive displacement vacuum pumps are highly efficient and commonly used in many industries.
Self-priming centrifugal pump
Self-priming centrifugal pumps are designed with a water reservoir to help remove air from the pump. This water is then recirculated throughout the pump, allowing the pump to run without air. The water reservoir can be located above or in front of the impeller. The pump can then reserve water for the initial start.
The casing of the pump contains an increasingly larger channel forming a cavity retainer and semi-double volute. When water enters the pump through channel A, it flows back to the impeller through channels B-C. When the pump is started a second time, the water in the pump body will be recirculated back through the impeller. This recycling process happens automatically.
These pumps are available in a variety of models and materials. They feature special stainless steel castings that are corrosion and wear-resistant. They can be used in high-pressure applications and their design eliminates the need for inlet check valves and intermediate valves. They can also be equipped with long intake pipes, which do not require activation.
Self-priming centrifugal pumps are designed to run on their own, but there are some limitations. They cannot operate without a liquid source. A foot valve or external liquid source can help you start the self-priming pump.
Screw Pump
The mechanical and thermal characteristics of a screw vacuum pump are critical to its operation. They feature a small gap between the rotor and stator to minimize backflow and thermal growth. Temperature is a key factor in their performance, so they have an internal cooling system that uses water that circulates through the pump’s stator channels. The pump is equipped with a thermostatically controlled valve to regulate the water flow. Also includes a thermostatic switch for thermal control.
Screw vacuum pumps work by trapping gas in the space between the rotor and the housing. The gas is then moved to the exhaust port, where it is expelled at atmospheric pressure. The tapered discharge end of the screw further reduces the volume of gas trapped in the chamber. These two factors allow the pump to work efficiently and safely.
Screw vacuum pumps are designed for a variety of applications. In some applications, the pump needs to operate at very low pressures, such as when pumping large volumes of air. For this application, the SCREWLINE SP pump is ideal. Their low discharge temperature and direct pumping path ensure industrial process uptime. These pumps also feature non-contact shaft seals to reduce mechanical wear. Additionally, they feature a special cantilever bearing arrangement to eliminate potential sources of bearing failure and lubrication contamination.
Screw vacuum pumps use an air-cooled screw to generate a vacuum. They are compact, and clean, and have a remote monitoring system with built-in intelligence. By using the app, users can monitor pump performance remotely.
Diaphragm Pump
Diaphragm vacuum pumps are one of the most common types of vacuum pumps found in laboratories and manufacturing facilities. The diaphragm is an elastomeric membrane held in place around the outer diameter. While it is not possible to seal a diaphragm vacuum pump, there are ways to alleviate the problems associated with this design.
Diaphragm vacuum pumps are versatile and can be used in a variety of clean vacuum applications. These pumps are commercially available with a built-in valve system, but they can also be modified to include one. Because diaphragm pumps are so versatile, it’s important to choose the right type for the job. Understanding how pumps work will help you match the right pump to the right application.
Diaphragm vacuum pumps offer a wide range of advantages, including an extremely long service life. Most diaphragm pumps can last up to ten thousand hours. However, they may be inefficient for processes that require deep vacuum, in which case alternative technologies may be required. Additionally, due to the physics of diaphragm pumps, the size of these pumps may be limited. Also, they are not suitable for high-speed pumping.
Diaphragm vacuum pumps are a versatile subset of laboratory pumps. They are popular for their oil-free construction and low maintenance operation. They are available in a variety of styles and have many optional features. In addition to low maintenance operation, they are chemically resistant and can be used with a variety of sample types. However, diaphragm pumps tend to have lower displacements than other vacuum pumps.
Atmospheric pressure is a key factor in a vacuum pump system
Atmospheric pressure is the pressure created by the collision of air molecules. The more they collide, the greater the pressure. This applies to pure gases and mixtures. When you measure atmospheric pressure, the pressure gauge reads about 14.7 psia. The higher the pressure, the greater the force on the gas molecules.
The gas entering the vacuum pump system is below atmospheric pressure and may contain entrained liquids. The mechanism of this process can be explained by molecular kinetic energy theory. The theory assumes that gas molecules in the atmosphere have high velocities. The resulting gas molecules will then start moving in random directions, colliding with each other and creating pressure on the walls of the vacuum vessel.
Atmospheric pressure is a critical factor in a vacuum pump system. A vacuum pump system is useless without proper atmospheric pressure measurement. The pressure in the atmosphere is the total pressure of all gases, including nitrogen and oxygen. Using total pressure instead of partial pressure can cause problems. The thermal conductivity of various gases varies widely, so working at full pressure can be dangerous.
When choosing a vacuum pump, consider its operating range. Some pumps operate at low atmospheric pressure, while others are designed to operate at high or ultra-high pressure. Different types of pumps employ different technologies that enhance their unique advantages.
The screw pump is less efficient in pumping gases with smaller molecular weight
Vacuuming requires a high-quality pump. This type of pump must be able to pump gas of high purity and very low pressure. Screw pumps can be used in laboratory applications and are more efficient when pumping small molecular weight gases. Chemical resistance is critical to pump life. Chemical resistant materials are also available. Chemically resistant wetted materials minimize wear.
Gear pumps are more efficient than screw pumps, but are less efficient when pumping lower molecular weight gases. Gear pumps also require a larger motor to achieve the same pumping capacity. Compared to gear pumps, progressive cavity pumps also have lower noise levels and longer service life. In addition, gear pumps have a large footprint and are not suitable for tight spaces.
Progressive cavity pumps have two or three screws and a housing and side cover. They are also equipped with gears and bearings. Their mechanical design allows them to operate in high pressure environments with extremely low noise. The progressive cavity pump is a versatile pump that can be used in a variety of applications.
Dry screw compressors have different aspect ratios and can operate at high and low pressures. The maximum allowable differential pressure for screw compressors ranges from 0.4 MPa for 3/5 rotors to 1.5 MPa for 4/6 rotors. These numbers need to be determined on a case-by-case basis.
editor by Dream 2024-05-10
China best Vrd-16 Dual Stage Rotary Vane Oil Vacuum Pump Price vacuum pump
Product Description
Product Description
China Lab Oil Vacuum pump Two-stage rotary vane workshop Vacuum pump Mechanical pump Electric suction pump VRD series
It is mainly used in medicinal products analysis , industry of fine chemicals , biochemical pharmacy , food examination , The criminal investigation technology , etc . It is used with the precision chromatography instrument , the necessary of laboratory . This product is specially designed for laboratory , reliable and easy to use .
APPLICATION:rotary evaporator/ glass reactor / vacuum filter / distillation
Product Parameters
MODEL | VRD-8 | VRD-16 | VRD-24 | VRD-30 | VRD-48 | VRD-65 | |
Displacement speed m3/h (L/s) |
50Hz | 8 (2.2) | 16 (4.4) | 24 (6.6) | 30 (8.3) | 48 (13.3) | 65 (18) |
60Hz | 9.6 (2.6) | 19.2 (5.2) | 28.8 (7.9) | 36 (9.9) | 57.6 (16) | 78 (21.6) | |
Ultimate partial pressure gas ballast closed (Pa) | 5×10-2 | 4×10-2 | 4×10-2 | 4×10-2 | 4×10-2 | 4×10-2 | |
Ultimate total pressure gas ballast closed (Pa) | 5×10-1 | 4×10-1 | 4×10-1 | 4×10-1 | 4×10-1 | 4×10-1 | |
Ultimate total pressure gas ballast open (Pa) | 3 | 8×10-1 | 8×10-1 | 8×10-1 | 8×10-1 | 8×10-1 | |
power supply | Single/Three phase | Single/Three phase | Single/Three phase | Single/Three phase | Three phase | Three phase | |
Power rating (kW) | 0.4/0.37 | 0.75/0.55 | 1.1/0.75 | 1.1 | 1.5 | 2.2 | |
Intake and exhaust DN (mm) | KF16/25 | KF25 | KF25/40 | KF25/40 | KF40 | KF40 | |
Oil capacity (L) | 0.6~1.0 | 0.9~1.5 | 1.3~2.0 | 1.3~2.0 | 3.3~4.5 | 3.3~4.5 | |
Motor speed (rpm) | 50Hz | 1440 | 1440 | 1440 | 1440 | 1440 | 1440 |
60Hz | 1720 | 1720 | 1720 | 1720 | 1720 | 1720 | |
Ambient temperature (°C) | 5 – 40 | 5 – 40 | 5 – 40 | 5 – 40 | 5 – 40 | 5 – 40 | |
Noise level (dB) | ≤56 | ≤58 | ≤58 | ≤58 | ≤62 | ≤62 | |
Net weight (kg) | 20 | 33 | 35 | 37 | 62 | 65 |
Detailed Photos
1.Two-Shift adjustable gas ballast valve satisfies different requirements of condensable vapor(such as water vapor) to be exhausted out of pump in different processes.
2.Dual protection of oil anti-sucking back ensures vacuum system from oil pollution when pump stops running and needs to be easily restarted.
3.Forced oil circulation system consisted of oil pump and constant pressure oil supply mechanism ensures stable running of the pump.
4. Less components are used, easy to maintain and repair.
Company Profile
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Oil or Not: | Oil |
---|---|
Structure: | Rotary Vacuum Pump |
Exhauster Method: | Positive Displacement Pump |
Vacuum Degree: | Low Vacuum |
Work Function: | Maintain the Pump |
Working Conditions: | Oil Pump |
Customization: |
Available
|
|
---|
How to install a vacuum pump
A vacuum pump creates a relative vacuum within a sealed volume by drawing gas molecules from the sealed volume. Vacuum pumps can be used in a variety of industrial applications. They also offer various lubrication options. If you are considering purchasing, please understand its functions and features before purchasing.
How it works
The working principle of a vacuum pump is called gas transfer. The principle can be further divided into two basic categories: positive displacement and momentum transfer. At high pressure and moderate vacuum, gas molecules collide and move and create a viscous flow. At higher vacuum levels, gas molecules separate to create molecular or transitional flows.
Another principle of vacuum pumps is fluid-tightness. There are two main types of seals: rotary seals and screw seals. Rotary seals prevent liquid leakage, while screw seals only allow liquids to flow out at higher pressures. Some pumps may not use the third seal.
The flow rate of the vacuum pump determines the machine’s ability to pump a certain amount of material. A higher pumping speed will shorten the drain time. Therefore, the mass flow of the vacuum pump must be carefully considered. The speed and type of vacuum must also be considered.
The working principle of a vacuum pump is to push gas molecules from a high-pressure state to a low-pressure state. This creates a partial vacuum. There are many different types of vacuum pumps, each with different functions. Some are mechanical, some are chemical. In either case, their function is the same: to create a partial or complete vacuum. Vacuum pumps use a variety of technologies and are sized according to the application. Proper sizing is critical for optimum efficiency.
Gas transfer pumps use the same principles as vacuum pumps but use different technology. One of the earliest examples is the Archimedes spiral. Its structure consists of a single screw inside a hollow cylinder. More modern designs use double or triple screws. The rotation of the screw causes gas molecules to be trapped in the cavity between the screw and the housing. The fluid is then discharged at slightly above atmospheric pressure. This difference is called the compression ratio.
Another type of vacuum pump is a diffusion pump. Its main use is industrial vacuum processing. It is used in applications such as mass spectrometry, nanotechnology and analytical instrumentation. These pumps are generally inexpensive to purchase and operate.
Apply
Vacuum pumps are essential for many scientific and industrial processes. They are used in the production of vacuum tubes, CRTs, lamps and semiconductor processing. They can also be used to support mechanical equipment. For example, they can be mounted on the engine of a motor vehicle. Likewise, they can be used to power hydraulic components of aircraft. Among other uses, the vacuum pump helps calibrate the gyroscope.
Vacuum pumps are widely used in the pharmaceutical industry and are one of the largest users of this technology. They help deal with hazardous materials and eliminate waste quickly. They are also used in power jets, dump fuel tanks and rear doors, among others. However, they are sensitive to contamination and should only be used in environments where leaks can be prevented. Therefore, choosing the right fluid for the application is very important.
The most popular type of vacuum pump is the rotary vane pump. These pumps are known for their high pumping speed and low pressure. Their efficient pumping capacity allows them to reach pressures below 10-6 bar. Additionally, they are usually oil-sealed and have excellent vacuuming capabilities.
Vacuum pumps are often used to remove air from closed systems. They create a vacuum by reducing the density of the air in the compressed space. This is done by using the mechanical force energy generated by the rotating shaft. When the pump is under pressure, it converts this energy into pneumatic power. When the pressure is different, the energy produced depends on the volume of the gas and the pressure difference between the inner and outer atmospheres.
Vacuum pumps are also used in the manufacture of solar cells. They are used in the manufacture of solar cells, including ingot casting processes as well as cell and module processes. The design of the vacuum system plays an important role in reducing the cost of the process, thus making it profitable. Due to their low maintenance costs, they are an invaluable tool for making solar cells.
Vacuum pumps are widely used in many applications. In addition to industrial and research uses, they are also used in water remediation.
Oil Lubrication Option
Vacuum pumps are available in a variety of oil lubrication options. Choosing the right lubricant can help protect your vacuum pump and maximize its performance. Different base oils may contain different additives, such as antioxidants, and some contain additional additives for specific purposes. You should choose an oil with the right concentration of these additives for optimal lubrication of your vacuum pump.
Vacuum pumps are usually lubricated with paraffinic mineral oil. However, this type of lubricant evaporates as the temperature increases. To minimize evaporative losses, choose a lubricant with low vapor pressure. Also, you should choose lubricants that are resistant to extreme temperatures. Extreme temperatures can put extra stress on the oil and can even significantly shorten the life of the oil.
In terms of viscosity, synthetic oils are the best choice for vacuum pumps. These types of oils are designed to resist gas dissolution and are more resistant to corrosion. Therefore, synthetic oils are ideal for handling aggressive substances. Whether or not your pump needs lubrication, choosing a quality product is important.
The vacuum pump oil should be changed periodically according to the manufacturer’s recommendations. If you use a filter, you should also change the oil as soon as the filter reaches the end of its life. Unplanned oil changes will eventually cause the vacuum pump to not reach its maximum vacuum capacity.
You can buy vacuum pump oil from vacuum pump manufacturers or other suppliers. These options are available in a variety of sizes, and labels can be customized. The oil should be designed for the pump. However, you should check the manufacturer’s recommendations to avoid buying the wrong type.
If you choose to use a synthetic oil, it is important to use a good quality oil. It helps the pump work more efficiently and prolong its life.
Install
After choosing a suitable location, the next step is to install the pump. First, place the pump on a flat surface. Then, screw the pump onto the motor body above the check valve. Make sure the accessories are wrapped with sealing tape and secured with screws. The direction of gas inflow and outflow is indicated by arrows on the pump. The direction of rotation around the pump is also shown.
During commissioning, check the operation of each part of the pump. If the pump is equipped with a pipe connection, the pipe should be the same size and shape as the pump flange. Also, make sure that the piping does not cause any pressure drop. In addition, the first three weeks of operation require the installation of protective nets at the suction ports.
When selecting a pump, consider the back pressure of the system. Too much back pressure will affect the capacity of the vacuum pump. Also, check the temperature of the seal. If the temperature is too high, the seal may be damaged. It could also be due to a partially closed valve in the recirculation line or a clogged filter. Circulation pumps and heat exchangers should also be checked for fouling.
The vacuum pump is usually installed in the chassis area of the car. They can be mounted next to the engine or on a lower support frame. They are usually fastened to the bracket using suitable shock absorbers and isolating elements. However, before installing the vacuum pump, be sure to check the vacuum pump’s wiring harness before connecting it to the vehicle.
In many experimental setups, a vacuum pump is essential. However, improperly installed vacuum pumps can expose users to harmful vapors and chemicals. Appropriate plugs and belt guards should be installed to prevent any accidental chemical exposure. It is also important to install a fume hood for the pump.
In most cases, vacuum pumps come with installation manuals and instructions. Some manufacturers even offer start-up assistance if needed.
editor by Dream 2024-05-07
China best Xd-020 Rotary Vane Oil 0.75kw Vacuum Pump vacuum pump diy
Product Description
Product Description
Rotary vane vacuum pump mainly consists of pump body, rotor, rotary vane, end cap, oil tank and so on. A rotor with 3 vanes is mounted eccentrically in a cylindrical housing, the 3 vanes slide in the rotor slots. When rotating, the centrifugal force keeps the vanes in contact with the housing and the rotation drives the rotor to slide along the housing.
1.Exhaust porti nterface | 2.Exhaust filter | 3.Suction valve |
4.Oil level gauge | 5.Drain valve | 6.Filler plug |
7.Exhaust valve | 8.Blade | 9.Rotor |
10.Tank | 11.Axial fan | 12.Motor |
13.Oil filter | 14.Suction port interface | 15.Air ballast valve |
16.Radiator tube | 17.Return valve |
Working principle
The diagram below shows the structure of the pump. When the rotor rotates, the vanes, the housing and the 2 end caps form three chambers, every turn, the volume of each chamber increases or decreases due to the sliding of the vanes, completing the suction and discharge process.
Main features
- Able to work continuously for a long time under the inlet pressure of 5×104Pa.
- Low noise, low vibration, foot bolts is not required.
- Exhaust filter in the pump effectively separates the oil in the gas to avoid pollution of the environment.
- Directly driven by motor.
- Compact structure, light weight, air-cooled.
- Easy to operate, install and maintain.
Applications
The rotary vane vacuum pump is suitable for the applications where the requirement of vacuum is not high and the operation is reliable and maintenance is convenient. It is commonly used in vacuum packaging of various foodstuffs, vacuum forming of rubber and plastic industry, paper transmission of printing industry, vacuum impregnation and leakage prevention of various castings, vacuum fixture, vacuum drying, vacuum filtration, and hospital surgery.
Product Parameters
Model | Nominal pumping speed(50Hz) m³/h |
Ultimate pressure ≤Pa |
Ultimate pressure with Gas Ballast valve on ≤Pa | Nominal motor rating (50Hz) kw | Nominal motor speed (50Hz) RPM | Water vapour capacity kg/h |
Noise level db(A) | Oil capacity L |
Working Temperature ºC |
Suction Connection size inch |
Discharge Connection size inch |
Weight kg |
XD-571 | 10 | 200 | 0.37 | 2800 | 0.4 | 62 | 0.5 | 77 | G1/2″ | G1/2″ | 16 | |
XD-571 | 20 | 200 | 0.75 | 2880 | 0.4 | 63 | 0.5 | 77 | G1/2″ | G1/2″ | 18 | |
XD-571A | 20 | 200 | 0.75 | 2880 | 0.4 | 63 | 0.5 | 77 | G1/2″ | G1/2″ | 18 | |
XD-571C | 20 | 200 | 0.9 | 2880 | 0.4 | 65 | 0.5 | 79 | G3/4″ | G3/4″ | 20 | |
XD-571 | 25 | 200 | 0.75 | 2880 | 0.4 | 65 | 0.5 | 79 | G3/4″ | G3/4″ | 20 | |
XD-040C | 40 | 50 | 200 | 1.1 | 1500 | 0.6 | 64 | 1.25 | 76 | G1 1/4″ | G1 1/4″ | 48 |
XD-063C | 63 | 50 | 200 | 1.5/2.2 | 1500 | 1 | 65 | 2 | 79 | G1 1/4″ | G1 1/4″ | 58 |
XD-063D | 63 | 50 | 200 | 1.5 | 1500 | 0.6 | 65 | 1.5 | 79 | G1 1/4″ | G1 1/4″ | 49 |
XD-100C | 100 | 50 | 200 | 2.2/3 | 1500 | 1.5 | 66 | 2 | 79 | G1 1/4″ | G1 1/4″ | 72 |
XD-160C | 160 | 50 | 200 | 4 | 1500 | 2.5 | 71 | 5 | 70 | G2″ | G2″ | 158 |
XD-202C | 200 | 50 | 200 | 4 | 1500 | 4 | 73 | 5 | 70 | G2″ | G2″ | 158 |
XD-250C | 250 | 50 | 200 | 5.5 | 1500 | 4.5 | 73 | 7 | 73 | G2″ | G2″ | 195 |
XD-302C | 300 | 50 | 200 | 5.5/7.5 | 1500 | 5 | 75 | 7 | 75 | G2″ | G2″ | 211 |
Dimensional drawing
Our factory
FAQ
Q: What information should I offer for an inquiry?
A: You can inquire based on the model directly, but it is always recommended that you contact us so that we can help you to check if the pump is the most appropriate for your application.
Q: Can you make a customized vacuum pump?
A: Yes, we can do some special designs to meet customer applications. Such as customized sealing systems, speical surface treatment can be applied for roots vacuum pump and screw vacuum pump. Please contact us if you have special requirements.
Q: I have problems with our vacuum pumps or vacuum systems, can you offer some help?
A: We have application and design engineers with more than 30 years of experience in vacuum applications in different industries and help a lot of customers resolve their problems, such as leakage issues, energy-saving solutions, more environment-friendly vacuum systems, etc. Please contact us and we’ll be very happy if we can offer any help to your vacuum system.
Q: Can you design and make customized vacuum systems?
A: Yes, we are good for this.
Q: What is your MOQ?
A: 1 piece or 1 set.
Q: How about your delivery time?
A: 5-10 working days for the standard vacuum pump if the quantity is below 20 pieces, 20-30 working days for the conventional vacuum system with less than 5 sets. For more quantity or special requirements, please contact us to check the lead time.
Q: What are your payment terms?
A: By T/T, 50% advance payment/deposit and 50% paid before shipment.
Q: How about the warranty?
A: We offer 1-year warranty (except for the wearing parts).
Q: How about the service?
A: We offer remote video technical support. We can send the service engineer to the site for some special requirements.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Online Video Instruction |
---|---|
Warranty: | 1 Year |
Nominal Pumping Speed(50Hz): | 20m3/H |
Ultimate Pressure(W/O Gas Ballast Valve): | 2 Hpa |
Nominal Motor Rating(50Hz): | 0.75kw |
Nominal Motor Speed(50Hz): | 2880rpm |
What Is the Role of Vacuum Pumps in Semiconductor Manufacturing?
Vacuum pumps play a critical role in semiconductor manufacturing processes. Here’s a detailed explanation:
Semiconductor manufacturing involves the production of integrated circuits (ICs) and other semiconductor devices used in various electronic applications. Vacuum pumps are used extensively throughout the semiconductor manufacturing process to create and maintain the required vacuum conditions for specific manufacturing steps.
Here are some key roles of vacuum pumps in semiconductor manufacturing:
1. Deposition Processes: Vacuum pumps are used in deposition processes such as physical vapor deposition (PVD) and chemical vapor deposition (CVD). These processes involve depositing thin films of materials onto semiconductor wafers to create various layers and patterns. Vacuum pumps help create a low-pressure environment necessary for precise control of the deposition process, ensuring uniform and high-quality film formation.
2. Etching and Cleaning: Vacuum pumps are utilized in etching and cleaning processes, which involve the removal of specific layers or contaminants from semiconductor wafers. Dry etching techniques, such as plasma etching and reactive ion etching, require a vacuum environment to facilitate the ionization and removal of material. Vacuum pumps aid in creating the necessary low-pressure conditions for efficient etching and cleaning processes.
3. Ion Implantation: Ion implantation is a process used to introduce impurities into specific regions of a semiconductor wafer to modify its electrical properties. Vacuum pumps are used to evacuate the ion implantation chamber, creating the required vacuum environment for accurate and controlled ion beam acceleration and implantation.
4. Wafer Handling and Transfer: Vacuum pumps are employed in wafer handling and transfer systems. These systems utilize vacuum suction to securely hold and manipulate semiconductor wafers during various manufacturing steps, such as loading and unloading from process chambers, robotic transfer between tools, and wafer alignment.
5. Load Lock Systems: Load lock systems are used to transfer semiconductor wafers between atmospheric conditions and the vacuum environment of process chambers. Vacuum pumps are integral components of load lock systems, creating and maintaining the vacuum conditions necessary for wafer transfer while minimizing contamination risks.
6. Metrology and Inspection: Vacuum pumps are utilized in metrology and inspection tools used for characterizing semiconductor devices. These tools, such as scanning electron microscopes (SEMs) and focused ion beam (FIB) systems, often operate in a vacuum environment to enable high-resolution imaging and accurate analysis of semiconductor structures and defects.
7. Leak Detection: Vacuum pumps are employed in leak detection systems to identify and locate leaks in vacuum chambers, process lines, and other components. These systems rely on vacuum pumps to evacuate the system and then monitor for any pressure rise, indicating the presence of leaks.
8. Cleanroom Environment Control: Semiconductor manufacturing facilities maintain cleanroom environments to prevent contamination during the fabrication process. Vacuum pumps are used in the design and operation of the cleanroom ventilation and filtration systems, helping to maintain the required air cleanliness levels by removing particulates and maintaining controlled air pressure differentials.
Vacuum pumps used in semiconductor manufacturing processes are often specialized to meet the stringent requirements of the industry. They need to provide high vacuum levels, precise control, low contamination levels, and reliability for continuous operation.
Overall, vacuum pumps are indispensable in semiconductor manufacturing, enabling the creation of the necessary vacuum conditions for various processes, ensuring the production of high-quality semiconductor devices.
How Do Vacuum Pumps Impact the Quality of 3D Printing?
Vacuum pumps play a significant role in improving the quality and performance of 3D printing processes. Here’s a detailed explanation:
3D printing, also known as additive manufacturing, is a process of creating three-dimensional objects by depositing successive layers of material. Vacuum pumps are utilized in various aspects of 3D printing to enhance the overall quality, accuracy, and reliability of printed parts. Here are some key ways in which vacuum pumps impact 3D printing:
1. Material Handling and Filtration: Vacuum pumps are used in 3D printing systems to handle and control the flow of materials. They create the necessary suction force to transport powdered materials, such as polymers or metal powders, from storage containers to the printing chamber. Vacuum systems also assist in filtering and removing unwanted particles or impurities from the material, ensuring the purity and consistency of the feedstock. This helps to prevent clogging or contamination issues during the printing process.
2. Build Plate Adhesion: Proper adhesion of the printed object to the build plate is crucial for achieving dimensional accuracy and preventing warping or detachment during the printing process. Vacuum pumps are employed to create a vacuum environment or suction force that securely holds the build plate and ensures firm adhesion between the first layer of the printed object and the build surface. This promotes stability and minimizes the risk of layer shifting or deformation during the printing process.
3. Material Drying: Many 3D printing materials, such as filament or powdered polymers, can absorb moisture from the surrounding environment. Moisture-contaminated materials can lead to poor print quality, reduced mechanical properties, or defects in the printed parts. Vacuum pumps with integrated drying capabilities can be employed to create a low-pressure environment, effectively removing moisture from the materials before they are used in the printing process. This ensures the dryness and quality of the materials, resulting in improved print outcomes.
4. Resin Handling in Stereolithography (SLA): In SLA 3D printing, a liquid resin is selectively cured using light sources to create the desired object. Vacuum pumps are utilized to facilitate the resin handling process. They can be employed to degas or remove air bubbles from the liquid resin, ensuring a smooth and bubble-free flow during material dispensing. This helps to prevent defects and imperfections caused by trapped air or bubbles in the final printed part.
5. Enclosure Pressure Control: Some 3D printing processes, such as selective laser sintering (SLS) or binder jetting, require the printing chamber to be maintained at a specific pressure or controlled atmosphere. Vacuum pumps are used to create a controlled low-pressure or vacuum environment within the printing chamber, enabling precise pressure regulation and maintaining the desired conditions for optimal printing results. This control over the printing environment helps to prevent oxidation, improve material flow, and enhance the quality and consistency of printed parts.
6. Post-Processing and Cleaning: Vacuum pumps can also aid in post-processing steps and cleaning of 3D printed parts. For instance, in processes like support material removal or surface finishing, vacuum systems can assist in the removal of residual support structures or excess powder from printed objects. They can also be employed in vacuum-based cleaning methods, such as vapor smoothing, to achieve smoother surface finishes and enhance the aesthetics of the printed parts.
7. System Maintenance and Filtration: Vacuum pumps used in 3D printing systems require regular maintenance and proper filtration to ensure their efficient and reliable operation. Effective filtration systems within the vacuum pumps help to remove any contaminants or particles generated during printing, preventing their circulation and potential deposition on the printed parts. This helps to maintain the cleanliness of the printing environment and minimize the risk of defects or impurities in the final printed objects.
In summary, vacuum pumps have a significant impact on the quality of 3D printing. They contribute to material handling and filtration, build plate adhesion, material drying, resin handling in SLA, enclosure pressure control, post-processing and cleaning, as well as system maintenance and filtration. By utilizing vacuum pumps in these critical areas, 3D printing processes can achieve improved accuracy, dimensional stability, material quality, and overall print quality.
How Do You Choose the Right Size Vacuum Pump for a Specific Application?
Choosing the right size vacuum pump for a specific application involves considering several factors to ensure optimal performance and efficiency. Here’s a detailed explanation:
1. Required Vacuum Level: The first consideration is the desired vacuum level for your application. Different applications have varying vacuum level requirements, ranging from low vacuum to high vacuum or even ultra-high vacuum. Determine the specific vacuum level needed, such as microns of mercury (mmHg) or pascals (Pa), and choose a vacuum pump capable of achieving and maintaining that level.
2. Pumping Speed: The pumping speed, also known as the displacement or flow rate, is the volume of gas a vacuum pump can remove from a system per unit of time. It is typically expressed in liters per second (L/s) or cubic feet per minute (CFM). Consider the required pumping speed for your application, which depends on factors such as the volume of the system, the gas load, and the desired evacuation time.
3. Gas Load and Composition: The type and composition of the gas or vapor being pumped play a significant role in selecting the right vacuum pump. Different pumps have varying capabilities and compatibilities with specific gases. Some pumps may be suitable for pumping only non-reactive gases, while others can handle corrosive gases or vapors. Consider the gas load and its potential impact on the pump’s performance and materials of construction.
4. Backing Pump Requirements: In some applications, a vacuum pump may require a backing pump to reach and maintain the desired vacuum level. A backing pump provides a rough vacuum, which is then further processed by the primary vacuum pump. Consider whether your application requires a backing pump and ensure compatibility and proper sizing between the primary pump and the backing pump.
5. System Leakage: Evaluate the potential leakage in your system. If your system has significant leakage, you may need a vacuum pump with a higher pumping speed to compensate for the continuous influx of gas. Additionally, consider the impact of leakage on the required vacuum level and the pump’s ability to maintain it.
6. Power Requirements and Operating Cost: Consider the power requirements of the vacuum pump and ensure that your facility can provide the necessary electrical supply. Additionally, assess the operating cost, including energy consumption and maintenance requirements, to choose a pump that aligns with your budget and operational considerations.
7. Size and Space Constraints: Take into account the physical size of the vacuum pump and whether it can fit within the available space in your facility. Consider factors such as pump dimensions, weight, and the need for any additional accessories or support equipment.
8. Manufacturer’s Recommendations and Expert Advice: Consult the manufacturer’s specifications, guidelines, and recommendations for selecting the right pump for your specific application. Additionally, seek expert advice from vacuum pump specialists or engineers who can provide insights based on their experience and knowledge.
By considering these factors and evaluating the specific requirements of your application, you can select the right size vacuum pump that meets the desired vacuum level, pumping speed, gas compatibility, and other essential criteria. Choosing the appropriate vacuum pump ensures efficient operation, optimal performance, and longevity for your application.
editor by Dream 2024-05-03
China wholesaler Efficient Oil Sealed Rotary Vane Vacuum Pump with Double Stage System for Lab Equipment supplier
Product Description
Efficient Oil Sealed Rotary Vane Vacuum Pump with Double Stage System for Lab Equipment
The rotary vane vacuum pump is an oil-sealed rotary displacement pump. The outlet valve is oil-sealed. The inlet valve is designed as a vacuum safety valve that is always open during operation. It can be used independently ,which also can be as booster pump, diffusion pump , molecular pump and titanium pump’s pre-pump. Also used as electronic devices produce, vacuum drying, filtration, welding, metal smelting, etc.
Shipping method | Note |
Express | Door to door, very convenient, don’t need to clearance or pick-up |
By air | Airport to an airport, you need to do the customs clearance and pick up the goods at your local airport, which you can have a local shipping agent to do for you. |
By sea | Port to port and you need to do the customs clearance and pick-up the goods at your local port, which you can have a local shipping agent to do for you. |
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | 1year |
---|---|
Warranty: | 1year |
Oil or Not: | Oil |
Structure: | Rotary Vacuum Pump |
Exhauster Method: | Positive Displacement Pump |
Vacuum Degree: | High Vacuum |
What Is the Vacuum Level and How Is It Measured in Vacuum Pumps?
The vacuum level refers to the degree of pressure below atmospheric pressure in a vacuum system. It indicates the level of “emptiness” or the absence of gas molecules in the system. Here’s a detailed explanation of vacuum level measurement in vacuum pumps:
Vacuum level is typically measured using pressure units that represent the difference between the pressure in the vacuum system and atmospheric pressure. The most common unit of measurement for vacuum level is the Pascal (Pa), which is the SI unit. Other commonly used units include Torr, millibar (mbar), and inches of mercury (inHg).
Vacuum pumps are equipped with pressure sensors or gauges that measure the pressure within the vacuum system. These gauges are specifically designed to measure the low pressures encountered in vacuum applications. There are several types of pressure gauges used for measuring vacuum levels:
1. Pirani Gauge: Pirani gauges operate based on the thermal conductivity of gases. They consist of a heated element exposed to the vacuum environment. As gas molecules collide with the heated element, they transfer heat away, causing a change in temperature. By measuring the change in temperature, the pressure can be inferred, allowing the determination of the vacuum level.
2. Thermocouple Gauge: Thermocouple gauges utilize the thermal conductivity of gases similar to Pirani gauges. They consist of two dissimilar metal wires joined together, forming a thermocouple. As gas molecules collide with the thermocouple, they cause a temperature difference between the wires, generating a voltage. The voltage is proportional to the pressure and can be calibrated to provide a reading of the vacuum level.
3. Capacitance Manometer: Capacitance manometers measure pressure by detecting the change in capacitance between two electrodes caused by the deflection of a flexible diaphragm. As the pressure in the vacuum system changes, the diaphragm moves, altering the capacitance and providing a measurement of the vacuum level.
4. Ionization Gauge: Ionization gauges operate by ionizing gas molecules in the vacuum system and measuring the resulting electrical current. The ion current is proportional to the pressure, allowing the determination of the vacuum level. There are different types of ionization gauges, such as hot cathode, cold cathode, and Bayard-Alpert gauges.
5. Baratron Gauge: Baratron gauges utilize the principle of capacitance manometry but with a different design. They consist of a pressure-sensing diaphragm separated by a small gap from a reference electrode. The pressure difference between the vacuum system and the reference electrode causes the diaphragm to deflect, changing the capacitance and providing a measurement of the vacuum level.
It’s important to note that different types of vacuum pumps may have different pressure ranges and may require specific pressure gauges suitable for their operating conditions. Additionally, vacuum pumps are often equipped with multiple gauges to provide information about the pressure at different stages of the pumping process or in different parts of the system.
In summary, vacuum level refers to the pressure below atmospheric pressure in a vacuum system. It is measured using pressure gauges specifically designed for low-pressure environments. Common types of pressure gauges used in vacuum pumps include Pirani gauges, thermocouple gauges, capacitance manometers, ionization gauges, and Baratron gauges.
\
How Do Vacuum Pumps Impact the Quality of 3D Printing?
Vacuum pumps play a significant role in improving the quality and performance of 3D printing processes. Here’s a detailed explanation:
3D printing, also known as additive manufacturing, is a process of creating three-dimensional objects by depositing successive layers of material. Vacuum pumps are utilized in various aspects of 3D printing to enhance the overall quality, accuracy, and reliability of printed parts. Here are some key ways in which vacuum pumps impact 3D printing:
1. Material Handling and Filtration: Vacuum pumps are used in 3D printing systems to handle and control the flow of materials. They create the necessary suction force to transport powdered materials, such as polymers or metal powders, from storage containers to the printing chamber. Vacuum systems also assist in filtering and removing unwanted particles or impurities from the material, ensuring the purity and consistency of the feedstock. This helps to prevent clogging or contamination issues during the printing process.
2. Build Plate Adhesion: Proper adhesion of the printed object to the build plate is crucial for achieving dimensional accuracy and preventing warping or detachment during the printing process. Vacuum pumps are employed to create a vacuum environment or suction force that securely holds the build plate and ensures firm adhesion between the first layer of the printed object and the build surface. This promotes stability and minimizes the risk of layer shifting or deformation during the printing process.
3. Material Drying: Many 3D printing materials, such as filament or powdered polymers, can absorb moisture from the surrounding environment. Moisture-contaminated materials can lead to poor print quality, reduced mechanical properties, or defects in the printed parts. Vacuum pumps with integrated drying capabilities can be employed to create a low-pressure environment, effectively removing moisture from the materials before they are used in the printing process. This ensures the dryness and quality of the materials, resulting in improved print outcomes.
4. Resin Handling in Stereolithography (SLA): In SLA 3D printing, a liquid resin is selectively cured using light sources to create the desired object. Vacuum pumps are utilized to facilitate the resin handling process. They can be employed to degas or remove air bubbles from the liquid resin, ensuring a smooth and bubble-free flow during material dispensing. This helps to prevent defects and imperfections caused by trapped air or bubbles in the final printed part.
5. Enclosure Pressure Control: Some 3D printing processes, such as selective laser sintering (SLS) or binder jetting, require the printing chamber to be maintained at a specific pressure or controlled atmosphere. Vacuum pumps are used to create a controlled low-pressure or vacuum environment within the printing chamber, enabling precise pressure regulation and maintaining the desired conditions for optimal printing results. This control over the printing environment helps to prevent oxidation, improve material flow, and enhance the quality and consistency of printed parts.
6. Post-Processing and Cleaning: Vacuum pumps can also aid in post-processing steps and cleaning of 3D printed parts. For instance, in processes like support material removal or surface finishing, vacuum systems can assist in the removal of residual support structures or excess powder from printed objects. They can also be employed in vacuum-based cleaning methods, such as vapor smoothing, to achieve smoother surface finishes and enhance the aesthetics of the printed parts.
7. System Maintenance and Filtration: Vacuum pumps used in 3D printing systems require regular maintenance and proper filtration to ensure their efficient and reliable operation. Effective filtration systems within the vacuum pumps help to remove any contaminants or particles generated during printing, preventing their circulation and potential deposition on the printed parts. This helps to maintain the cleanliness of the printing environment and minimize the risk of defects or impurities in the final printed objects.
In summary, vacuum pumps have a significant impact on the quality of 3D printing. They contribute to material handling and filtration, build plate adhesion, material drying, resin handling in SLA, enclosure pressure control, post-processing and cleaning, as well as system maintenance and filtration. By utilizing vacuum pumps in these critical areas, 3D printing processes can achieve improved accuracy, dimensional stability, material quality, and overall print quality.
What Is the Purpose of a Vacuum Pump in an HVAC System?
In an HVAC (Heating, Ventilation, and Air Conditioning) system, a vacuum pump serves a crucial purpose. Here’s a detailed explanation:
The purpose of a vacuum pump in an HVAC system is to remove air and moisture from the refrigerant lines and the system itself. HVAC systems, particularly those that rely on refrigeration, operate under specific pressure and temperature conditions to facilitate the transfer of heat. To ensure optimal performance and efficiency, it is essential to evacuate any non-condensable gases, air, and moisture from the system.
Here are the key reasons why a vacuum pump is used in an HVAC system:
1. Removing Moisture: Moisture can be present within an HVAC system due to various factors, such as system installation, leaks, or improper maintenance. When moisture combines with the refrigerant, it can cause issues like ice formation, reduced system efficiency, and potential damage to system components. A vacuum pump helps remove moisture by creating a low-pressure environment, which causes the moisture to boil and turn into vapor, effectively evacuating it from the system.
2. Eliminating Air and Non-Condensable Gases: Air and non-condensable gases, such as nitrogen or oxygen, can enter an HVAC system during installation, repair, or through leaks. These gases can hinder the refrigeration process, affect heat transfer, and decrease system performance. By using a vacuum pump, technicians can evacuate the air and non-condensable gases, ensuring that the system operates with the designed refrigerant and pressure levels.
3. Preparing for Refrigerant Charging: Prior to charging the HVAC system with refrigerant, it is crucial to create a vacuum to remove any contaminants and ensure the system is clean and ready for optimal refrigerant circulation. By evacuating the system with a vacuum pump, technicians ensure that the refrigerant enters a clean and controlled environment, reducing the risk of system malfunctions and improving overall efficiency.
4. Leak Detection: Vacuum pumps are also used in HVAC systems for leak detection purposes. After evacuating the system, technicians can monitor the pressure to check if it holds steady. A significant drop in pressure indicates the presence of leaks, enabling technicians to identify and repair them before charging the system with refrigerant.
In summary, a vacuum pump plays a vital role in an HVAC system by removing moisture, eliminating air and non-condensable gases, preparing the system for refrigerant charging, and aiding in leak detection. These functions help ensure optimal system performance, energy efficiency, and longevity, while also reducing the risk of system malfunctions and damage.
editor by Dream 2024-05-03
China factory Hight Speed Oil Less Combination Rotary Vane Vacuum Pump with Best Sales
Product Description
Product Description
WZB Series Oil Free Vacuum Sealer Rotary Vane Vacuum Pump
Introducing the WZB Series Oil Free Vacuum Sealer Rotary Vane Vacuum Pump, a reliable and efficient solution for all your vacuum sealing needs. This dry rotary vane vacuum pressure compound pump air pump offers a pure exhaust, ensuring a clean and hygienic environment. With its low noise operation, you can enjoy a peaceful and serene atmosphere while using this pump.
Designed with the latest cooling technology, the pump features a unique cooling device that effectively reduces compressed air humidity. This ensures an ideal working condition for your vacuum sealing tasks.
The WZB Series Vacuum Pump is equipped with a high-speed design, guaranteeing optimal performance. However, please note that it is not suitable for use in the 60HZ area. If you plan to use it in this area, we recommend contacting our agent or the manufacturer for further assistance.
When it comes to the environment in which the pump operates, it can handle temperatures ranging from 0 to 40ºC. The humidity level should ideally be within the range of 65±20%. Additionally, the power supply voltage should not fluctuate beyond ±10% of the rated voltage. To ensure safety, we advise setting up an overload protector, such as a thermal relay.
Rest assured that the WZB Series Vacuum Pump is built to last. Its motor label indicates the rated current value, which is standard at 110% for 50HZ and 120% for 60HZ (equivalent performance to 50HZ). This pump is a reliable and efficient choice for various applications.
Experience the benefits of the WZB Series Oil Free Vacuum Sealer Rotary Vane Vacuum Pump. Order yours today and enjoy the convenience and peace of mind it brings to your vacuum sealing tasks.
Features At A Glance
Dry Running Rotary Vane Vacuum Pump
Introducing the WZB Series Oil Free Vacuum Sealer Rotary Vane Vacuum Pump, a reliable and efficient solution for all your vacuum needs. This pump is designed to provide a calm and soothing experience, ensuring a pollution-free environment for your working space or products.
Unlike traditional oil vacuum pumps, our WZB Series pump does not require any fuel or regular maintenance, saving you time and effort. With its low running sound and long service life, you can enjoy a peaceful and uninterrupted workflow.
Equipped with a vacuum pressure gauge and pressure regulator, this pump allows you to easily monitor and adjust the vacuum level according to your specific requirements. Its special self-lubricating carbon slide ensures strong wear resistance, guaranteeing durability and reliability.
Thanks to its high-speed operation, the WZB Series pump can be directly connected to the motor, allowing for a compact and space-saving design. The multiple sliding plates enable stable suction and exhaust, minimizing pulsation and ensuring a smooth operation.
Experience the benefits of the WZB Series Oil Free Vacuum Sealer Rotary Vane Vacuum Pump, brought to you by HangZhou Mingkai Electromechanical Co., Ltd. Perfect for various fields, including CNC machines and print machines, this pump offers oil-free operation, a rotary vacuum pump structure, and excellent vacuum performance.
Product Parameters
Model | Power(kw) | Voltage(V) | Speed(rmp) | Air flow(L/min) | Vacuum(KPa) | In/Outlet size | Weight(kg) |
WZB15-P – – | |||||||
V-01 | 0.4 | 200-240 | 1450 | 235 | 60 | G3/4 | 24 |
V-03 | 0.4 | 220/380 | 1450 | 235 | 60 | G3/4 | 21 |
B-01 | 0.4 | 200-240 | 1450 | 235 | – | G3/4 | 24 |
B-03 | 0.4 | 220/380 | 1450 | 235 | – | G3/4 | 21 |
VB-01 | 0.4 | 200-240 | 1450 | 235 | V(suction)+B(exhaust)<60KPa | G3/4 | 24 |
VB-03 | 0.4 | 220/380 | 1450 | 235 | V(suction)+B(exhaust)<60KPa | G3/4 | 21 |
WZB25-P – – | |||||||
V-01 | 0.75 | 200-240 | 1450 | 405 | 60 | G3/4 | 24 |
V-03 | 0.75 | 220/380 | 1450 | 405 | 60 | G3/4 | 33 |
B-01 | 0.75 | 200-240 | 1450 | 405 | – | G3/4 | 24 |
B-03 | 0.75 | 220/380 | 1450 | 405 | – | G3/4 | 33 |
VB-01 | 0.75 | 200-240 | 1450 | 405 | V(suction)+B(exhaust)<60KPa | G3/4 | 24 |
VB-03 | 0.75 | 220/380 | 1450 | 405 | V(suction)+B(exhaust)<60KPa | G3/4 | 33 |
WZB40-P – – | |||||||
V-01 | 1.5 | 200-240 | 1450 | 575 | 60 | G3/4 | 55 |
V-03 | 1.5 | 220/380 | 1450 | 575 | 60 | G3/4 | 50 |
B-01 | 1.5 | 200-240 | 1450 | 575 | – | G3/4 | 55 |
B-03 | 1.5 | 220/380 | 1450 | 575 | – | G3/4 | 50 |
VB-01 | 1.5 | 200-240 | 1450 | 575 | V(suction)+B(exhaust)<60KPa | G3/4 | 55 |
VB-03 | 1.5 | 220/380 | 1450 | 575 | V(suction)+B(exhaust)<60KPa | G3/4 | 50 |
WZB60-P – – | |||||||
V-03 | 2.2 | 220/380 | 1450 | 1190 | 60 | G1 | 79 |
B-03 | 2.2 | 220/380 | 1450 | 1190 | – | G1 | 79 |
VB-03 | 2.2 | 220/380 | 1450 | 1190 | V(suction)+B(exhaust)<60KPa | G1 | 79 |
combination pump
Model | Power(kw) | Voltage(V) | Speed(rmp) | Air flow(L/min) | Vacuum(KPa) | Pressure(KPa) | In/Outlet size | Weight(kg) | |
WZB | |||||||||
30-P-VB-03 | 0.75 | 220/380 | 1730 | 280 | 60 | 60 | G3/4 | 41 | |
50-P-VB-03 | 1.5 | 220/380 | 1730 | 480 | 60 | 60 | G3/4 | 53 | |
80-P-VB-03 | 2.2 | 220/380 | 1730 | 685 | 60 | 60 | G3/4 | 69 | |
120-P-VB-03 | 4 | 220/380 | 1730 | 1115 | 60 | 60 | G1 | 110 | |
30-P-VBVB-03 | vacuum | 0.75 | 220/380 | 1730 | 280 | 55 | 20 | G3/4 | 41 |
blower | 35 | 50 | |||||||
50-P-VBVB-03 | vacuum | 1.5 | 220/380 | 1730 | 480 | 55 | 20 | G3/4 | 53 |
blower | 35 | 50 | |||||||
80-P-VBVB-03 | vacuum | 2.2 | 220/380 | 1730 | 685 | 55 | 20 | G3/4 | 69 |
blower | 35 | 50 |
Our History:
Manvac, a company founded in 2012, has established itself as a trusted name in the industry. With our head office located in Hong Kong and our factory and export sales office situated in HangZhou city, China mainland, we have been able to cater to the needs of customers worldwide.
Our Factory:
Situated in HangZhou, our factory spans an impressive 6000m² area. Comprising 3 buildings dedicated to production, half-finished product storage, and a finished product warehouse, our facility is equipped to meet the demands of our customers efficiently and effectively.
Product Description:
Introducing the WZB25 Oil-Free Electric Vacuum Pump for Print Machines by HangZhou Mingkai Electromechanical Co., Ltd. This innovative pump is designed to provide exceptional performance and reliability, making it an ideal choice for CNC machines and print machines.
With its oil-free operation, this vacuum pump ensures a clean and efficient working environment. The rotary vacuum pump structure guarantees optimal performance, while the impressive vacuum level ensures superior results.
Key Features:
– Oil-Free: This pump eliminates the need for oil, ensuring a clean and hassle-free operation.
– Rotary Vacuum Pump: The innovative design of this pump ensures efficient and reliable performance.
– Impressive Vacuum Level: With its exceptional vacuum level, this pump delivers outstanding results.
Whether you need a pump for your CNC machine or print machine, the WZB25 Oil-Free Electric Vacuum Pump is the perfect choice. Experience the benefits of a clean and efficient working environment, enhanced performance, and superior results. Trust in HangZhou Mingkai Electromechanical Co., Ltd. for all your vacuum pump needs.
Our Product:
WZB25 Oil Free Electric Vacuum Pump for Print Machine
Introducing the WZB25 Oil Free Electric Vacuum Pump, a cutting-edge solution designed by HangZhou Mingkai Electromechanical Co., Ltd. to meet the specific needs of print machines. This high-performance pump is perfect for CNC machines and offers a range of exceptional features.
- Oil Free: With its advanced technology, this vacuum pump operates without the need for oil, ensuring a clean and efficient printing process.
- Rotary Vacuum Pump: The WZB25 utilizes a rotary vacuum pump structure, providing reliable and consistent performance for your print machine.
- Vacuum: Achieve the desired vacuum level effortlessly with the WZB25. Its powerful suction capabilities ensure optimal printing results.
Experience the benefits of this exceptional electric vacuum pump. Say goodbye to messy oil and hello to a seamless printing experience. Trust in the expertise of HangZhou Mingkai Electromechanical Co., Ltd. to deliver top-quality solutions for your print machine needs.
Product Application:
Application: Our oil-free electric vacuum pump, the WZB25, is designed to provide efficient and reliable performance in a variety of applications. Whether you need wastewater aeration treatment, air knives drying system, fish farming, or industrial vacuum and pressure system, our vacuum pump is the perfect solution.
Certifications: Rest assured, our vacuum pump meets the highest standards of quality and safety. It is CE, CCC, ROHS, NEMKO, SGS, TUV, and UL certified, ensuring its reliability and compliance with industry regulations.
Product Description:
WZB25 Oil-Free Electric Vacuum Pump for Print Machine
Introducing our WZB25 oil-free electric vacuum pump, specifically designed for print machines. With its advanced features and exceptional performance, this pump is a game-changer in the industry.
- Oil-Free: Say goodbye to messy oil changes and maintenance. Our vacuum pump operates without oil, ensuring a clean and hassle-free experience.
- Rotary Vacuum Pump: The innovative rotary design of our pump ensures efficient and reliable operation, providing consistent vacuum performance.
- Vacuum: With its impressive vacuum capabilities, our pump creates the ideal conditions for your print machine, ensuring optimal performance and productivity.
Experience the difference with our WZB25 oil-free electric vacuum pump. Its exceptional features and certifications make it the perfect choice for your print machine needs. Trust in the quality and reliability of HangZhou Mingkai Electromechanical Co., Ltd.
HangZhou Mingkai Electromechanical Co., Ltd.
Product Name: WZB25 Oil Free Electric Vacuum Pump for Print Machine
Keywords: CNC Machine Pump, Oil Free Vacuum Pump, Electric Vacuum Pump
Attributes: Oil Free, Rotary Vacuum Pump, Vacuum
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Oil or Not: | Oil Free |
---|---|
Structure: | Rotary Vacuum Pump |
Vacuum Degree: | Vacuum |
Samples: |
US$ 685/Piece
1 Piece(Min.Order) | Order Sample |
---|
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
Types of vacuum pumps
A vacuum pump is a device that draws gas molecules from a sealed volume and leaves a partial vacuum in its wake. Its job is to create a relative vacuum within a specific volume or volume. There are many types of vacuum pumps, including centrifugal, screw and diaphragm.
Forward centrifugal pump
Positive displacement centrifugal vacuum pumps are one of the most commonly used pump types in the oil and gas industry. Their efficiency is limited to a range of materials and can handle relatively high solids concentrations. However, using these pumps has some advantages over other types of pumps.
Positive displacement pumps have an enlarged cavity on the suction side and a reduced cavity on the discharge side. This makes them ideal for applications involving high viscosity fluids and high pressures. Their design makes it possible to precisely measure and control the amount of liquid pumped. Positive displacement pumps are also ideal for applications requiring precise metering.
Positive displacement pumps are superior to centrifugal pumps in several ways. They can handle higher viscosity materials than centrifuges. These pumps also operate at lower speeds than centrifugal pumps, which makes them more suitable for certain applications. Positive displacement pumps are also less prone to wear.
Positive displacement vacuum pumps operate by drawing fluid into a chamber and expanding it to a larger volume, then venting it to the atmosphere. This process happens several times per second. When maximum expansion is reached, the intake valve closes, the exhaust valve opens, and fluid is ejected. Positive displacement vacuum pumps are highly efficient and commonly used in many industries.
Self-priming centrifugal pump
Self-priming centrifugal pumps are designed with a water reservoir to help remove air from the pump. This water is then recirculated throughout the pump, allowing the pump to run without air. The water reservoir can be located above or in front of the impeller. The pump can then reserve water for the initial start.
The casing of the pump contains an increasingly larger channel forming a cavity retainer and semi-double volute. When water enters the pump through channel A, it flows back to the impeller through channels B-C. When the pump is started a second time, the water in the pump body will be recirculated back through the impeller. This recycling process happens automatically.
These pumps are available in a variety of models and materials. They feature special stainless steel castings that are corrosion and wear-resistant. They can be used in high-pressure applications and their design eliminates the need for inlet check valves and intermediate valves. They can also be equipped with long intake pipes, which do not require activation.
Self-priming centrifugal pumps are designed to run on their own, but there are some limitations. They cannot operate without a liquid source. A foot valve or external liquid source can help you start the self-priming pump.
Screw Pump
The mechanical and thermal characteristics of a screw vacuum pump are critical to its operation. They feature a small gap between the rotor and stator to minimize backflow and thermal growth. Temperature is a key factor in their performance, so they have an internal cooling system that uses water that circulates through the pump’s stator channels. The pump is equipped with a thermostatically controlled valve to regulate the water flow. Also includes a thermostatic switch for thermal control.
Screw vacuum pumps work by trapping gas in the space between the rotor and the housing. The gas is then moved to the exhaust port, where it is expelled at atmospheric pressure. The tapered discharge end of the screw further reduces the volume of gas trapped in the chamber. These two factors allow the pump to work efficiently and safely.
Screw vacuum pumps are designed for a variety of applications. In some applications, the pump needs to operate at very low pressures, such as when pumping large volumes of air. For this application, the SCREWLINE SP pump is ideal. Their low discharge temperature and direct pumping path ensure industrial process uptime. These pumps also feature non-contact shaft seals to reduce mechanical wear. Additionally, they feature a special cantilever bearing arrangement to eliminate potential sources of bearing failure and lubrication contamination.
Screw vacuum pumps use an air-cooled screw to generate a vacuum. They are compact, and clean, and have a remote monitoring system with built-in intelligence. By using the app, users can monitor pump performance remotely.
Diaphragm Pump
Diaphragm vacuum pumps are one of the most common types of vacuum pumps found in laboratories and manufacturing facilities. The diaphragm is an elastomeric membrane held in place around the outer diameter. While it is not possible to seal a diaphragm vacuum pump, there are ways to alleviate the problems associated with this design.
Diaphragm vacuum pumps are versatile and can be used in a variety of clean vacuum applications. These pumps are commercially available with a built-in valve system, but they can also be modified to include one. Because diaphragm pumps are so versatile, it’s important to choose the right type for the job. Understanding how pumps work will help you match the right pump to the right application.
Diaphragm vacuum pumps offer a wide range of advantages, including an extremely long service life. Most diaphragm pumps can last up to ten thousand hours. However, they may be inefficient for processes that require deep vacuum, in which case alternative technologies may be required. Additionally, due to the physics of diaphragm pumps, the size of these pumps may be limited. Also, they are not suitable for high-speed pumping.
Diaphragm vacuum pumps are a versatile subset of laboratory pumps. They are popular for their oil-free construction and low maintenance operation. They are available in a variety of styles and have many optional features. In addition to low maintenance operation, they are chemically resistant and can be used with a variety of sample types. However, diaphragm pumps tend to have lower displacements than other vacuum pumps.
Atmospheric pressure is a key factor in a vacuum pump system
Atmospheric pressure is the pressure created by the collision of air molecules. The more they collide, the greater the pressure. This applies to pure gases and mixtures. When you measure atmospheric pressure, the pressure gauge reads about 14.7 psia. The higher the pressure, the greater the force on the gas molecules.
The gas entering the vacuum pump system is below atmospheric pressure and may contain entrained liquids. The mechanism of this process can be explained by molecular kinetic energy theory. The theory assumes that gas molecules in the atmosphere have high velocities. The resulting gas molecules will then start moving in random directions, colliding with each other and creating pressure on the walls of the vacuum vessel.
Atmospheric pressure is a critical factor in a vacuum pump system. A vacuum pump system is useless without proper atmospheric pressure measurement. The pressure in the atmosphere is the total pressure of all gases, including nitrogen and oxygen. Using total pressure instead of partial pressure can cause problems. The thermal conductivity of various gases varies widely, so working at full pressure can be dangerous.
When choosing a vacuum pump, consider its operating range. Some pumps operate at low atmospheric pressure, while others are designed to operate at high or ultra-high pressure. Different types of pumps employ different technologies that enhance their unique advantages.
The screw pump is less efficient in pumping gases with smaller molecular weight
Vacuuming requires a high-quality pump. This type of pump must be able to pump gas of high purity and very low pressure. Screw pumps can be used in laboratory applications and are more efficient when pumping small molecular weight gases. Chemical resistance is critical to pump life. Chemical resistant materials are also available. Chemically resistant wetted materials minimize wear.
Gear pumps are more efficient than screw pumps, but are less efficient when pumping lower molecular weight gases. Gear pumps also require a larger motor to achieve the same pumping capacity. Compared to gear pumps, progressive cavity pumps also have lower noise levels and longer service life. In addition, gear pumps have a large footprint and are not suitable for tight spaces.
Progressive cavity pumps have two or three screws and a housing and side cover. They are also equipped with gears and bearings. Their mechanical design allows them to operate in high pressure environments with extremely low noise. The progressive cavity pump is a versatile pump that can be used in a variety of applications.
Dry screw compressors have different aspect ratios and can operate at high and low pressures. The maximum allowable differential pressure for screw compressors ranges from 0.4 MPa for 3/5 rotors to 1.5 MPa for 4/6 rotors. These numbers need to be determined on a case-by-case basis.
editor by Dream 2024-04-22
China Good quality Hot Sale 220V /110V 1.5cfm CHINAMFG Rotary Vane Small Oil Vacuum Pump vacuum pump ac
Product Description
Product Parameters
Model | RS-1 | RS-1.5 | RS-2 | RS-3 | RS-4 | RS-6 | |||||||
Voltage | 110V/60HZ | 220V/50HZ | 110V/60HZ | 220V/50HZ | 110V/60HZ | 220V/50HZ | 110V/60HZ | 220V/50HZ | 110V/60HZ | 220V/50HZ | 110V/60HZ | ||
Pumping Speed(CFM) | 3 | 2.5 | 4 | 3.5 | 5 | 4.5 | 7 | 6 | 9 | 8 | 12 | ||
Ultimate Vacuum | Pa | 5 | 2 | 2 | 2 | 2 | 2 | ||||||
M | 15 | 15 | 15 | 15 | 15 | 15 | |||||||
Rotating Speed(rpm) | 1720 | 1440 | 1720 | 1440 | 1720 | 1440 | 1720 | 1440 | 1720 | 1440 | 1720 | ||
Power(HP) | 1/4 | 1/3 | 1/3 | 1/2 | 3/4 | 1 | |||||||
Oil Capacity(ml) | 220 | 225 | 250 | 250 | 300 | 450 | |||||||
Dimension(mm) | 260*110*240 | 275*115*240 | 290*120*240 | 310*125*255 | 360*135*270 | 430*142*280 | |||||||
Weight(kg) | 6 | 6.5 | 9.5 | 10 | 11 | 19 |
Model | 2RS-0.5 | 2RS-1 | 2RS-1.5 | 2RS-2 | 2RS-3 | 2RS-4 | 2RS-5 | ||||||||
Voltage | 110V/60HZ | 220V/50HZ | 110V/60HZ | 220V/50HZ | 110V/60HZ | 220V/50HZ | 110V/60HZ | 220V/50HZ | 110V/60HZ | 220V/50HZ | 110V/60HZ | 220V/50HZ | 110V/60HZ | 220V/50HZ | |
Pumping Speed(CFM) | 2 | 1.5 | 3 | 2.5 | 4 | 3.5 | 5 | 4.5 | 7 | 6 | 12 | 10 | 14 | 12 | |
Ultimate Vacuum | Pa | 2*10-1 | |||||||||||||
M | 1.5micron | ||||||||||||||
Rotating Speed(rpm) | 3500 | 2800 | 3500 | 2800 | 3500 | 2800 | 3500 | 2800 | 3500 | 2800 | 1720 | 1440 | 1720 | 1440 | |
Power(HP) | 1/4 | 1/3 | 1/3 | 1/2 | 3/4 | 1 | 1 | ||||||||
Oil Capacity(ml) | 250 | 250 | 330 | 330 | 370 | 550 | 550 | ||||||||
Dimension(mm) | 280*110*215 | 280*110*215 | 290*115*220 | 290*115*220 | 360*135*275 | 430*142*280 | 430*142*280 | ||||||||
Weight(kg) | 8.5 | 9 | 9.5 | 10 | 12.5 | 20 | 20 |
Product Description
The pump is used to remove gas from sealed containers of basic equipment, it can be used alone, can also be used as backing pump for booster pump, diffusion pump, molecular pump, maintenance pump, titanium pump pre-pumping pump. Can be used in the manufacture of electric vacuum devices, vacuum welding, printing, plastic, refrigeration equipment repair and food instrument supporting, etc. Small size, light weight, low noise characteristics of a wide range of applications.
Company Profile
Packaging & Shipping
FAQ
Q1. What is your products range?
• Industry water chiller, recirculating cooling chiller, rotary evaporator, alcohol recovery equipment, short path distillation kit, glass molecular distillation equipment, falling film evaporator, jacketed glass reactor and other lab equipment.
Q2. Are you trading company or manufacturer?
• We are professional manufacture of lab equipment and we have our own factory.
Q3. Do you provide samples? Is it free?
• Yes, we could offer the sample. Considering the high value of our products, the sample is not free, but we will give you our best price including shipping cost.
Q4. Do you have warranty?
• Yes, we offer 1 year warranty for the spare part.
Q5. How long is your delivery time?
• Generally it is within 7 working days after receiving the payment if the goods are in stock. Or it is 15 working days if thegoods are not in stock, depending on order quantity.
Q6. What is your terms of payment?
• Payment≤15,000USD, 100% in advance. Payment≥15,000USD, 70% T/T in advance, balance before shipment.
(If you are concerned about payment security for the first order, we advise you can place Trade Assurance Order via Alibaba. you will get 100% payment refund if we can’t meet agreed delivery time.)
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Online Service Support |
---|---|
Warranty: | 1 Year |
Oil or Not: | Oil |
Structure: | Multistage Pump |
Vacuum Degree: | High Vacuum |
Work Function: | Mainsuction Pump |
Customization: |
Available
|
|
---|
Are there any notable brands or manufacturers of reliable small vacuum pumps?
Yes, there are several reputable brands and manufacturers known for producing reliable small vacuum pumps that are widely used in various industries and applications. Here are some notable brands in the world of small vacuum pumps:
1. Welch (Gardner Denver):
Welch, a brand under the Gardner Denver umbrella, is well-regarded for its high-quality laboratory vacuum pumps. They offer a range of oil-free and oil-lubricated pumps designed for applications like filtration, aspiration, and rotary evaporation.
2. KNF Neuberger:
KNF Neuberger specializes in diaphragm pumps and other small vacuum solutions. Their pumps are widely used in laboratory equipment, medical devices, and various industrial applications.
3. VACUUBRAND:
VACUUBRAND is a leading manufacturer of laboratory vacuum pumps and systems. They offer a comprehensive range of oil-free and oil-lubricated pumps, as well as vacuum controllers and accessories.
4. Pfeiffer Vacuum:
Pfeiffer Vacuum is known for its vacuum technology solutions, including compact and high-performance vacuum pumps. They serve a wide range of industries, including semiconductor manufacturing and research.
5. Edwards Vacuum:
Edwards Vacuum provides vacuum and abatement solutions for various industries. Their small vacuum pumps are used in applications like analytical instruments and research equipment.
6. Gast Manufacturing (IDEX Corporation):
Gast Manufacturing, part of the IDEX Corporation, offers a variety of small vacuum pumps and compressors. They are commonly used in medical devices, laboratory equipment, and environmental monitoring instruments.
7. Leybold:
Leybold is a global manufacturer of vacuum pumps and systems for industrial and research applications. They offer a range of small vacuum pumps designed for efficiency and reliability.
8. Becker Pumps:
Becker Pumps is known for its rotary vane vacuum pumps and compressors. Their compact and durable pumps are utilized in medical, laboratory, and industrial settings.
9. Agilent Technologies:
Agilent Technologies provides vacuum solutions, including small vacuum pumps, for analytical instrumentation and scientific research. Their pumps are known for precision and performance.
10. Busch Vacuum Solutions:
Busch Vacuum Solutions offers a wide range of vacuum pumps and systems for diverse industries, including pharmaceuticals, packaging, and laboratory applications.
These brands have established a reputation for producing reliable and efficient small vacuum pumps. When selecting a vacuum pump for a specific application, it’s important to consider factors such as the pump’s compatibility with your requirements, technical specifications, and after-sales support offered by the manufacturer.
Keep in mind that the suitability of a particular brand or model may vary depending on the application, so it’s advisable to consult with the manufacturer or a trusted supplier to choose the best small vacuum pump for your needs.
Are small vacuum pumps known for their energy efficiency?
Small vacuum pumps are generally recognized for their energy efficiency when compared to larger, industrial-scale vacuum pumps. Their energy efficiency can vary depending on the type of pump, design, and application. Here’s an overview of the energy efficiency of small vacuum pumps:
1. Type of Vacuum Pump:
The energy efficiency of a small vacuum pump largely depends on its type. Some types of small vacuum pumps are inherently more energy-efficient than others. For example, diaphragm pumps and scroll pumps are known for their energy efficiency, especially when they operate in low-to-medium vacuum ranges.
2. Oil-Free Operation:
Small vacuum pumps that operate without the use of oil are typically more energy-efficient. Oil-free pumps eliminate the need for continuous oil changes and reduce the energy consumption associated with oil lubrication systems.
3. Variable Speed Drives:
Many modern small vacuum pumps feature variable speed drives (VSDs) or frequency converters. These systems allow the pump to adjust its speed and power consumption based on the required vacuum level. VSD-equipped pumps can significantly reduce energy consumption during periods of low demand.
4. Efficient Cooling:
Efficient cooling systems help maintain the pump’s temperature and prevent overheating. Proper cooling reduces energy waste and prolongs the life of the pump. Look for pumps with efficient cooling mechanisms.
5. Application-Specific Efficiency:
The energy efficiency of a small vacuum pump may vary depending on its application. Some pumps are designed for specific tasks or industries and may be optimized for energy efficiency in those contexts.
6. Size and Capacity:
The size of the vacuum pump should match the application’s capacity requirements. Using an appropriately sized pump ensures that energy is not wasted by operating an oversized pump for a smaller task.
7. Energy Consumption Ratings:
Check the manufacturer’s specifications and energy consumption ratings for the vacuum pump model you intend to use. This information provides insights into the pump’s efficiency and helps you make an informed choice.
8. Regular Maintenance:
Maintaining the pump according to the manufacturer’s recommendations is essential for preserving its energy efficiency. Regular maintenance prevents energy losses due to wear and malfunctions.
9. Energy-Saving Features:
Some small vacuum pumps are equipped with energy-saving features like automatic shut-off when not in use, sleep modes, or energy-efficient controls. These features contribute to reduced energy consumption.
Overall, small vacuum pumps are known for their energy efficiency compared to larger industrial vacuum systems. However, the specific level of efficiency can vary based on factors such as the pump type, design, and how well it matches the application’s requirements. To maximize energy efficiency, it’s important to select the right pump for your needs and implement proper maintenance and operational practices.
Can you explain the different types of small vacuum pumps available in the market?
Certainly, there are several types of small vacuum pumps available in the market, each with unique working principles and applications. Here are some of the most common types:
1. Diaphragm Vacuum Pumps:
Diaphragm vacuum pumps use a flexible diaphragm that moves up and down to create suction. These pumps are oil-free, making them ideal for applications where contamination from lubricants is a concern, such as in laboratories. They are commonly used in vacuum filtration, sample concentration, and scientific research.
2. Rotary Vane Vacuum Pumps:
Rotary vane vacuum pumps operate by using vanes that rotate inside a cylindrical chamber. As the vanes move, they create a vacuum by trapping and compressing gas. These pumps are known for their high efficiency and reliability. They are used in applications like rotary evaporation, HVAC systems, and industrial processes.
3. Piston (Reciprocating) Vacuum Pumps:
Piston vacuum pumps use a piston-cylinder arrangement to create a vacuum. They are often found in smaller, portable units and are suitable for applications requiring intermittent or continuous vacuum, such as refrigeration evacuation, air sampling, and medical devices.
4. Scroll Vacuum Pumps:
Scroll vacuum pumps consist of two interleaved spiral scrolls that move in opposite directions. This design generates a series of crescent-shaped pockets, trapping and compressing gas as they move. Scroll pumps are known for their quiet operation and are used in applications like semiconductor manufacturing, analytical instruments, and vacuum ovens.
5. Venturi Vacuum Pumps:
Venturi vacuum pumps operate using the Venturi effect, where a high-speed fluid (usually air or gas) creates a vacuum when passing through a constriction. These pumps are simple and compact, making them suitable for portable and lightweight applications like vacuum pick-and-place systems and vacuum grippers.
6. Turbomolecular Vacuum Pumps:
Turbomolecular vacuum pumps are high-speed pumps that use rotating blades to capture and accelerate gas molecules out of the vacuum chamber. They are capable of achieving very high vacuum levels and are used in ultra-high vacuum applications, such as electron microscopy, mass spectrometry, and semiconductor manufacturing.
Choosing the right type of small vacuum pump depends on factors such as the required vacuum level, flow rate, contamination sensitivity, and application-specific requirements. It’s essential to consider these factors when selecting a vacuum pump to ensure it meets your needs effectively.
editor by CX 2024-03-30
China high quality 2xz Two Stage Oil Sealed Rotary Vane Vacuum Pump supplier
Product Description
Product Description
2XZ Series Rotary Vane Vacuum Pump
Overview
2XZ series vacuum pump has bipolar direct connecting structure, the working performance Is consisted of high pressure and low pressure grades. The inhalant hole Connects with vacuum equipment, the air in the container will be inhaled and exhausted Greatly while running.
This series of pumps are elementary equipment for pumping air from sealed vassels. It can be used alone, also can be used as the fore pump, process pump or titanium pump of booster pump, diffusion pump, and molecular pump. The pumps are also used in making electrical vacuum cases, vacuum jointing, printing, photoengraving, food packaging, vacuum forming, refrigeration equipment repair and instruments or a set of equipments in laboratory, It is widely used in aerospace, semiconductor , coating , food packaging,drying machines, refrigeration equipment, scientific research, medical treatment, electronics, chemicals, medicine and laboratory or laboratory of universities and colleges.
Features
a. Small volume, low weight and low noise
b. Equipped with gas ballast valve to pump a little water vapor.
c. Equipped with oil anti-suck back device.
d. 2XZ-2 with small caliber, 2XZ-4 pump with vacuum drying oven, freezing dry machine and printing machine.
e.Equipped with small caliber transforming joints and KF joints.
Product Parameters
Parameters/Model |
2XZ-0.25 |
2XZ-0.5 |
2XZ-1 |
2XZ-2 |
2XZ-4 |
|
Pumping speedm3/h(L/S) |
50(HZ) |
0.9(0.25) |
1.8(0.5) |
3.6(1) |
7.2(2) |
14.4(4) |
60(HZ) |
1.1(0.3) |
2.1(0.6) |
4.3(1.2) |
8.6(2.4) |
17.2(4.8) |
|
Ultimate pressure (Pa) |
Partial pressure |
≤6×10-1 |
≤6×10-2 |
≤6×10-2 |
≤6×10-2 |
≤6×10-2 |
Total pressure |
≤6.5 |
≤1.33 |
≤1.33 |
≤1.33 |
≤1.33 |
|
Rotary speed(r/min) |
50(HZ) |
1400 |
1400 |
1400 |
1400 |
1400 |
60(HZ) |
1720 |
1720 |
1720 |
1720 |
1720 |
|
Moter power(kw) |
0.12 |
0.18 |
0.25 |
0.37 |
0.55 |
|
Voltage(V) |
220 |
220/380 |
220/380 |
220/380 |
220/380 |
|
Inlet diam(O.D.)(mm) |
φ15 |
φ20 |
φ20 |
φ30 |
φ30 |
|
Noise level(dBA) |
63 |
65 |
65 |
68 |
68 |
|
Oil capacity(L) |
0.5 |
0.6 |
0.7 |
1 |
1.2 |
|
Dimensions(mm) |
403×130×240 |
447×168×260 |
469×168×260 |
514×168×282 |
565×168×282 |
|
Gross weight/Net weight(Kg) |
16/15 |
17/16 |
18/17 |
22/20 |
24/22 |
Detailed Photos
Packaging & Shipping
Packing Details : One pump in One plywood case
Delivery Details : 30 days after order confirmation
Standard package without original wood, no fumigation needed.
Company Profile
ZheZheJiang oto Pump Industrial Co., Ltd. is a professional pump manufacturer integrating R&D, manufacturing, sales and service as a whole, which has been certified by ISO9001 international quality management system.
Located in Xihu (West Lake) Dis.a Industrial Park, ZheJiang , CHINAMFG Pump Industrial possesses 2 manufacturing bases in ZheJiang and ZHangZhoug. Since our inception, CHINAMFG Pump Industrial has been committed to the innovation and development of various pumps. Our leading products include self-priming trash pump, centrifugal pump, submersible pump, diaphragm pump, vacuum pump, diesel pump, fire pump, etc.
FAQ
Q: Can I chat with you online? What is your company official website?
Q: What type of company CHINAMFG is?
A: CHINAMFG is a manufacture and trading company, has factories in ZheJiang and ZHangZhoug, with export and import license.
Q: What kinds of pumps do you supply?
A: Our products including self-priming trash pump, centrifugal pump, diaphragm pump, submersible pump, chemical pump, oil pump, diesel pump, fire fighting pump, etc.
Q: What is your payment terms?
A: Alibaba Trade Assurance, Western Union, Paypal, T/T, L/C, etc.
Q: Can you provide OEM, ODM service?
A: Yes. We have factories in ZheJiang and ZHangZhoug, we can make products according to your requirements.
Q: Why should we buy from you?
A: We are committed to provide best quality products at minimum delivery time and competitive price. We believe this is what customer wants. We are satified until customers are.
Q: What is your warranty period?
A: We provide 1 year of unconditional warranty on our products for the manufacturing defects.
Q: What about delivery time?
A: Normally our production time is within 2 weeks. Please confirm before order.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | 1 Year |
---|---|
Warranty: | 1 Year |
Acting Form: | Single-Acting |
Type: | Centrifugal Pump |
Displacement: | Variable Pump |
Performance: | No Leak |
Samples: |
US$ 300/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
Where can individuals or businesses source small vacuum pumps for various applications?
Individuals and businesses looking to source small vacuum pumps for a wide range of applications have several options to consider. Here are common sources for acquiring small vacuum pumps:
1. Manufacturers and Authorized Dealers:
Contacting the manufacturers directly or their authorized dealers is often a reliable way to purchase small vacuum pumps. Manufacturers typically offer a wide selection of models and provide technical support. Authorized dealers can assist with product selection and may offer competitive pricing.
2. Industrial Suppliers:
Industrial supply companies and distributors often carry a variety of vacuum pumps. These suppliers cater to a range of industries, including manufacturing, research, and laboratories. They can provide competitive pricing and may offer bulk purchase discounts.
3. Laboratory Equipment Suppliers:
For those seeking vacuum pumps for laboratory or scientific applications, specialized laboratory equipment suppliers are a valuable resource. They offer pumps designed for precise and controlled vacuum needs.
4. Online Marketplaces:
Online marketplaces like Amazon, eBay, and Alibaba feature a wide array of small vacuum pumps from various manufacturers and sellers. Buyers can compare prices, read reviews, and often find both new and used pumps.
5. HVAC and Refrigeration Suppliers:
Heating, ventilation, air conditioning, and refrigeration (HVAC/R) suppliers may carry vacuum pumps suitable for HVAC system maintenance and refrigeration applications. These suppliers are often found locally.
6. Scientific and Research Institutions:
Scientific and research institutions occasionally sell surplus equipment, including vacuum pumps, through online auctions or specialized surplus equipment vendors.
7. Rental Services:
For short-term or occasional use, renting small vacuum pumps can be a cost-effective option. Equipment rental companies may offer various pump types for temporary applications.
8. Online Manufacturer Websites:
Visiting the official websites of vacuum pump manufacturers provides access to comprehensive product information, specifications, and contact details for sales and support.
9. Trade Shows and Exhibitions:
Attending industry-specific trade shows, exhibitions, and conferences can be an excellent opportunity to connect with manufacturers, distributors, and suppliers in person. It allows for hands-on product evaluation and networking.
10. Classified Ads and Auctions:
Classified advertisement websites and auction platforms may feature used vacuum pumps for sale. Buyers should exercise caution and thoroughly assess the condition of used equipment.
When sourcing small vacuum pumps, individuals and businesses should consider factors such as the pump’s specifications, warranty, customer support, and the reputation of the supplier or seller. It’s essential to choose a source that aligns with the specific requirements of the application and ensures the reliability and performance of the vacuum pump.
Are small vacuum pumps known for their energy efficiency?
Small vacuum pumps are generally recognized for their energy efficiency when compared to larger, industrial-scale vacuum pumps. Their energy efficiency can vary depending on the type of pump, design, and application. Here’s an overview of the energy efficiency of small vacuum pumps:
1. Type of Vacuum Pump:
The energy efficiency of a small vacuum pump largely depends on its type. Some types of small vacuum pumps are inherently more energy-efficient than others. For example, diaphragm pumps and scroll pumps are known for their energy efficiency, especially when they operate in low-to-medium vacuum ranges.
2. Oil-Free Operation:
Small vacuum pumps that operate without the use of oil are typically more energy-efficient. Oil-free pumps eliminate the need for continuous oil changes and reduce the energy consumption associated with oil lubrication systems.
3. Variable Speed Drives:
Many modern small vacuum pumps feature variable speed drives (VSDs) or frequency converters. These systems allow the pump to adjust its speed and power consumption based on the required vacuum level. VSD-equipped pumps can significantly reduce energy consumption during periods of low demand.
4. Efficient Cooling:
Efficient cooling systems help maintain the pump’s temperature and prevent overheating. Proper cooling reduces energy waste and prolongs the life of the pump. Look for pumps with efficient cooling mechanisms.
5. Application-Specific Efficiency:
The energy efficiency of a small vacuum pump may vary depending on its application. Some pumps are designed for specific tasks or industries and may be optimized for energy efficiency in those contexts.
6. Size and Capacity:
The size of the vacuum pump should match the application’s capacity requirements. Using an appropriately sized pump ensures that energy is not wasted by operating an oversized pump for a smaller task.
7. Energy Consumption Ratings:
Check the manufacturer’s specifications and energy consumption ratings for the vacuum pump model you intend to use. This information provides insights into the pump’s efficiency and helps you make an informed choice.
8. Regular Maintenance:
Maintaining the pump according to the manufacturer’s recommendations is essential for preserving its energy efficiency. Regular maintenance prevents energy losses due to wear and malfunctions.
9. Energy-Saving Features:
Some small vacuum pumps are equipped with energy-saving features like automatic shut-off when not in use, sleep modes, or energy-efficient controls. These features contribute to reduced energy consumption.
Overall, small vacuum pumps are known for their energy efficiency compared to larger industrial vacuum systems. However, the specific level of efficiency can vary based on factors such as the pump type, design, and how well it matches the application’s requirements. To maximize energy efficiency, it’s important to select the right pump for your needs and implement proper maintenance and operational practices.
What are small vacuum pumps, and what are their primary uses?
Small vacuum pumps are compact, portable devices designed to create a vacuum or reduce air pressure within a confined space. They find application in various industries and scientific fields due to their versatility and efficiency. Here are the primary uses of small vacuum pumps:
1. Laboratory and Scientific Research:
Small vacuum pumps are essential tools in laboratories for a wide range of applications, including:
- Vacuum Filtration: Used to separate solids from liquids by creating a vacuum to draw the liquid through a filter.
- Rotary Evaporation: Enables gentle solvent evaporation, commonly used in chemistry and biochemistry.
- Sample Concentration: Helps in concentrating samples for analysis.
2. Medical and Healthcare:
In medical devices and healthcare settings, small vacuum pumps are used for applications like:
- Blood Collection: To create a vacuum in blood collection tubes, aiding in the collection and preservation of blood samples.
- Wound Care: Some wound treatment systems utilize vacuum pumps to assist in wound healing.
- Dental Suction: Dental chairs and equipment often include small vacuum pumps for saliva suction and other functions.
3. Manufacturing and Automation:
Small vacuum pumps play a critical role in manufacturing processes, including:
- Electronic Component Handling: Used in pick-and-place machines to handle delicate electronic components.
- Vacuum Sealing: Employed in packaging machinery to create airtight seals in food and pharmaceutical packaging.
- Vacuum Grippers: To lift and manipulate objects in automated assembly lines.
4. HVAC and Refrigeration:
In heating, ventilation, air conditioning (HVAC), and refrigeration systems, small vacuum pumps are utilized for evacuating and degassing refrigerant lines to ensure efficient and reliable operation.
5. Automotive Industry:
In the automotive industry, small vacuum pumps are used in various systems, including power brakes and emission control systems.
6. Environmental Monitoring:
Small vacuum pumps are used in environmental monitoring equipment to collect air or water samples for analysis.
7. Research and Development:
Researchers and engineers use small vacuum pumps in R&D projects for tasks like material testing, surface coating, and vacuum chambers.
Small vacuum pumps come in different types, including diaphragm pumps, rotary vane pumps, and piston pumps, each suited to specific applications. Their compact size, portability, and versatility make them indispensable tools in various fields.
editor by CX 2024-03-26
China manufacturer Good Quantity Oil Sealed OEM Sliding Rotary Vane Vacuum Pump wholesaler
Product Description
Product Description
XD Series Rotary Vane Vacuum Pump
1. XD portable food package vacuum pump rotary vane air vacuum pump can be cooled by air.
2. This series vacuum pump is to suck or compress air from or into container.
3. It is applicable for air or any other gas which is non-corrosive, insoluble in water and without solids. Air or gas contains a small amount of liquid is allowed.
4. With oil-return resistant structure, the pump oil is kept from returning to the sucking system.
5. A gas-draining filter fixed in the pump, which operates stable with small vibration can effectively eliminate the oil mist, and can operate under any pressure.
6. The air vacuum pump is applied to several sectors such as food vacuum packing, pharmaceutical, paper, printing machines, glass, vacuum clamps, industrial conveyor, drying industry and other units.
Specification
Model | XD-571 | XD-571 | XD-030 | XD-040 | XD-063 | XD-100 | XD-160 | XD-250 |
Pumping capacity(m3/h) | 10 | 20 | 30 | 40 | 63 | 100 | 160 | 250 |
Ultimate vacuum pressure (Pa) | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 |
Motor power(KW) | 0.37 | 0.9(220V) | 0.9(220V) | 1.1 | 1.5 | 3 | 4 | 7.5 |
0.75(380) | 0.75(380V) | |||||||
Speed(r/min) | 1440 | 2800 | 1440 | 1440 | 1440 | 1440 | 1440 | 1440 |
Oil consumption amount(L) | 0.5 | 0.5 | 1 | 1.5 | 2 | 4 | 9 | 9 |
Voltage(V) | 110/220/380 | 110/220/380 | 110/220/380 | 110/220/380 | 380 | 380 | 380 | 380 |
Inlet(Inch) | G 1/2 | G 1/2″ | G 1 1/4″ | G 1 1/4″ | G 1 1/4″ | G 1 1/4″ | G 2″ | G 2 1/2″ |
Weight(kg) | 16 | 19 | 29 | 65 | 62 | 115 | 200 | 200 |
Detailed Photos
Packaging & Shipping
Packing Details : One pump in One plywood case
Delivery Details : 30 days after order confirmation
Standard package without original wood, no fumigation needed.
Company Profile
ZheZheJiang oto Pump Industrial Co., Ltd. is a professional pump manufacturer integrating R&D, manufacturing, sales and service as a whole, which has been certified by ISO9001 international quality management system.
Located in Xihu (West Lake) Dis.a Industrial Park, ZheJiang , CHINAMFG Pump Industrial possesses 2 manufacturing bases in ZheJiang and ZHangZhoug. Since our inception, CHINAMFG Pump Industrial has been committed to the innovation and development of various pumps. Our leading products include self-priming trash pump, centrifugal pump, submersible pump, diaphragm pump, vacuum pump, diesel pump, fire pump, etc.
FAQ
Q: Can I chat with you online? What is your company official website?
Q: What type of company CHINAMFG is?
A: CHINAMFG is a manufacture and trading company, has factories in ZheJiang and ZHangZhoug, with export and import license.
Q: What kinds of pumps do you supply?
A: Our products including self-priming trash pump, centrifugal pump, diaphragm pump, submersible pump, chemical pump, oil pump, diesel pump, fire fighting pump, etc.
Q: What is your payment terms?
A: Alibaba Trade Assurance, Western Union, Paypal, T/T, L/C, etc.
Q: Can you provide OEM, ODM service?
A: Yes. We have factories in ZheJiang and ZHangZhoug, we can make products according to your requirements.
Q: Why should we buy from you?
A: We are committed to provide best quality products at minimum delivery time and competitive price. We believe this is what customer wants. We are satified until customers are.
Q: What is your warranty period?
A: We provide 1 year of unconditional warranty on our products for the manufacturing defects.
Q: What about delivery time?
A: Normally our production time is within 2 weeks. Please confirm before order.
After-sales Service: | 1 Year |
---|---|
Warranty: | 1 Year |
Acting Form: | Single-Acting |
Type: | Centrifugal Pump |
Displacement: | Variable Pump |
Performance: | No Leak |
Samples: |
US$ 300/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
What Is the Role of Vacuum Pumps in Semiconductor Manufacturing?
Vacuum pumps play a critical role in semiconductor manufacturing processes. Here’s a detailed explanation:
Semiconductor manufacturing involves the production of integrated circuits (ICs) and other semiconductor devices used in various electronic applications. Vacuum pumps are used extensively throughout the semiconductor manufacturing process to create and maintain the required vacuum conditions for specific manufacturing steps.
Here are some key roles of vacuum pumps in semiconductor manufacturing:
1. Deposition Processes: Vacuum pumps are used in deposition processes such as physical vapor deposition (PVD) and chemical vapor deposition (CVD). These processes involve depositing thin films of materials onto semiconductor wafers to create various layers and patterns. Vacuum pumps help create a low-pressure environment necessary for precise control of the deposition process, ensuring uniform and high-quality film formation.
2. Etching and Cleaning: Vacuum pumps are utilized in etching and cleaning processes, which involve the removal of specific layers or contaminants from semiconductor wafers. Dry etching techniques, such as plasma etching and reactive ion etching, require a vacuum environment to facilitate the ionization and removal of material. Vacuum pumps aid in creating the necessary low-pressure conditions for efficient etching and cleaning processes.
3. Ion Implantation: Ion implantation is a process used to introduce impurities into specific regions of a semiconductor wafer to modify its electrical properties. Vacuum pumps are used to evacuate the ion implantation chamber, creating the required vacuum environment for accurate and controlled ion beam acceleration and implantation.
4. Wafer Handling and Transfer: Vacuum pumps are employed in wafer handling and transfer systems. These systems utilize vacuum suction to securely hold and manipulate semiconductor wafers during various manufacturing steps, such as loading and unloading from process chambers, robotic transfer between tools, and wafer alignment.
5. Load Lock Systems: Load lock systems are used to transfer semiconductor wafers between atmospheric conditions and the vacuum environment of process chambers. Vacuum pumps are integral components of load lock systems, creating and maintaining the vacuum conditions necessary for wafer transfer while minimizing contamination risks.
6. Metrology and Inspection: Vacuum pumps are utilized in metrology and inspection tools used for characterizing semiconductor devices. These tools, such as scanning electron microscopes (SEMs) and focused ion beam (FIB) systems, often operate in a vacuum environment to enable high-resolution imaging and accurate analysis of semiconductor structures and defects.
7. Leak Detection: Vacuum pumps are employed in leak detection systems to identify and locate leaks in vacuum chambers, process lines, and other components. These systems rely on vacuum pumps to evacuate the system and then monitor for any pressure rise, indicating the presence of leaks.
8. Cleanroom Environment Control: Semiconductor manufacturing facilities maintain cleanroom environments to prevent contamination during the fabrication process. Vacuum pumps are used in the design and operation of the cleanroom ventilation and filtration systems, helping to maintain the required air cleanliness levels by removing particulates and maintaining controlled air pressure differentials.
Vacuum pumps used in semiconductor manufacturing processes are often specialized to meet the stringent requirements of the industry. They need to provide high vacuum levels, precise control, low contamination levels, and reliability for continuous operation.
Overall, vacuum pumps are indispensable in semiconductor manufacturing, enabling the creation of the necessary vacuum conditions for various processes, ensuring the production of high-quality semiconductor devices.
Considerations for Selecting a Vacuum Pump for Cleanroom Applications
When it comes to selecting a vacuum pump for cleanroom applications, several considerations should be taken into account. Here’s a detailed explanation:
Cleanrooms are controlled environments used in industries such as semiconductor manufacturing, pharmaceuticals, biotechnology, and microelectronics. These environments require strict adherence to cleanliness and particle control standards to prevent contamination of sensitive processes or products. Selecting the right vacuum pump for cleanroom applications is crucial to maintain the required level of cleanliness and minimize the introduction of contaminants. Here are some key considerations:
1. Cleanliness: The cleanliness of the vacuum pump is of utmost importance in cleanroom applications. The pump should be designed and constructed to minimize the generation and release of particles, oil vapors, or other contaminants into the cleanroom environment. Oil-free or dry vacuum pumps are commonly preferred in cleanroom applications as they eliminate the risk of oil contamination. Additionally, pumps with smooth surfaces and minimal crevices are easier to clean and maintain, reducing the potential for particle buildup.
2. Outgassing: Outgassing refers to the release of gases or vapors from the surfaces of materials, including the vacuum pump itself. In cleanroom applications, it is crucial to select a vacuum pump with low outgassing characteristics to prevent the introduction of contaminants into the environment. Vacuum pumps specifically designed for cleanroom use often undergo special treatments or use materials with low outgassing properties to minimize this effect.
3. Particle Generation: Vacuum pumps can generate particles due to the friction and wear of moving parts, such as rotors or vanes. These particles can become a source of contamination in cleanrooms. When selecting a vacuum pump for cleanroom applications, it is essential to consider the pump’s particle generation level and choose pumps that have been designed and tested to minimize particle emissions. Pumps with features like self-lubricating materials or advanced sealing mechanisms can help reduce particle generation.
4. Filtration and Exhaust Systems: The filtration and exhaust systems associated with the vacuum pump are critical for maintaining cleanroom standards. The vacuum pump should be equipped with efficient filters that can capture and remove any particles or contaminants generated during operation. High-quality filters, such as HEPA (High-Efficiency Particulate Air) filters, can effectively trap even the smallest particles. The exhaust system should be properly designed to ensure that filtered air is released outside the cleanroom or passes through additional filtration before being reintroduced into the environment.
5. Noise and Vibrations: Noise and vibrations generated by vacuum pumps can have an impact on cleanroom operations. Excessive noise can affect the working environment and compromise communication, while vibrations can potentially disrupt sensitive processes or equipment. It is advisable to choose vacuum pumps specifically designed for quiet operation and that incorporate measures to minimize vibrations. Pumps with noise-dampening features and vibration isolation systems can help maintain a quiet and stable cleanroom environment.
6. Compliance with Standards: Cleanroom applications often have specific industry standards or regulations that must be followed. When selecting a vacuum pump, it is important to ensure that it complies with relevant cleanroom standards and requirements. Considerations may include ISO cleanliness standards, cleanroom classification levels, and industry-specific guidelines for particle count, outgassing levels, or allowable noise levels. Manufacturers that provide documentation and certifications related to cleanroom suitability can help demonstrate compliance.
7. Maintenance and Serviceability: Proper maintenance and regular servicing of vacuum pumps are essential for their reliable and efficient operation. When choosing a vacuum pump for cleanroom applications, consider factors such as ease of maintenance, availability of spare parts, and access to service and support from the manufacturer. Pumps with user-friendly maintenance features, clear service instructions, and a responsive customer support network can help minimize downtime and ensure continued cleanroom performance.
In summary, selecting a vacuum pump for cleanroom applications requires careful consideration of factors such as cleanliness, outgassing characteristics, particle generation, filtration and exhaust systems, noise and vibrations, compliance with standards, and maintenance requirements. By choosing vacuum pumps designed specifically for cleanroom use and considering these key factors, cleanroom operators can maintain the required level of cleanliness and minimize the risk of contamination in their critical processes and products.
Are There Different Types of Vacuum Pumps Available?
Yes, there are various types of vacuum pumps available, each designed to suit specific applications and operating principles. Here’s a detailed explanation:
Vacuum pumps are classified based on their operating principles, mechanisms, and the type of vacuum they can generate. Some common types of vacuum pumps include:
1. Rotary Vane Vacuum Pumps:
– Description: Rotary vane pumps are positive displacement pumps that use rotating vanes to create a vacuum. The vanes slide in and out of slots in the pump rotor, trapping and compressing gas to create suction and generate a vacuum.
– Applications: Rotary vane vacuum pumps are widely used in applications requiring moderate vacuum levels, such as laboratory vacuum systems, packaging, refrigeration, and air conditioning.
2. Diaphragm Vacuum Pumps:
– Description: Diaphragm pumps use a flexible diaphragm that moves up and down to create a vacuum. The diaphragm separates the vacuum chamber from the driving mechanism, preventing contamination and oil-free operation.
– Applications: Diaphragm vacuum pumps are commonly used in laboratories, medical equipment, analysis instruments, and applications where oil-free or chemical-resistant vacuum is required.
3. Scroll Vacuum Pumps:
– Description: Scroll pumps have two spiral-shaped scrolls—one fixed and one orbiting—which create a series of moving crescent-shaped gas pockets. As the scrolls move, gas is continuously trapped and compressed, resulting in a vacuum.
– Applications: Scroll vacuum pumps are suitable for applications requiring a clean and dry vacuum, such as analytical instruments, vacuum drying, and vacuum coating.
4. Piston Vacuum Pumps:
– Description: Piston pumps use reciprocating pistons to create a vacuum by compressing gas and then releasing it through valves. They can achieve high vacuum levels but may require lubrication.
– Applications: Piston vacuum pumps are used in applications requiring high vacuum levels, such as vacuum furnaces, freeze drying, and semiconductor manufacturing.
5. Turbo Molecular Vacuum Pumps:
– Description: Turbo pumps use high-speed rotating blades or impellers to create a molecular flow, continuously pumping gas molecules out of the system. They typically require a backing pump to operate.
– Applications: Turbo molecular pumps are used in high vacuum applications, such as semiconductor fabrication, research laboratories, and mass spectrometry.
6. Diffusion Vacuum Pumps:
– Description: Diffusion pumps rely on the diffusion of gas molecules and their subsequent removal by a high-speed jet of vapor. They operate at high vacuum levels and require a backing pump.
– Applications: Diffusion pumps are commonly used in applications requiring high vacuum levels, such as vacuum metallurgy, space simulation chambers, and particle accelerators.
7. Cryogenic Vacuum Pumps:
– Description: Cryogenic pumps use extremely low temperatures to condense and capture gas molecules, creating a vacuum. They rely on cryogenic fluids, such as liquid nitrogen or helium, for operation.
– Applications: Cryogenic vacuum pumps are used in ultra-high vacuum applications, such as particle physics research, material science, and fusion reactors.
These are just a few examples of the different types of vacuum pumps available. Each type has its advantages, limitations, and suitability for specific applications. The choice of vacuum pump depends on factors like required vacuum level, gas compatibility, reliability, cost, and the specific needs of the application.
editor by CX 2023-12-08