Tag Archives: small electric vacuum pump

China wholesaler -65kpa Flow 4L/Min Small Electric Vacuum Pump with Great quality

Product Description

Model Pressure Pump Vacuum Pump Rated Voltage No-load Current Max Pressure Max Vacuum Max Flow
  (Item Number) (Item Number) (Vdc) (A) (KPa) (KPa) (L/min)
TM30B-C TM30B-C12-P13004 TM30B-C12-V6504  12 / 24 0.24/0.15 130 -65 4
TM30B-D TM30B-D12-P13004 (outside controller) TM30B-D12-V6504 (outside controller) 12 / 24 0.24/0.15 130 -65 4
” P ” means pressure pump, ” V ” means vacuum pump, “6/12/24” means different voltages optional.
Pump Weight:250g; Pump Size:80mm*31mm*60mm; Inlet&Outlet with locknut:OD 4.9mm/ID 2.8mm,hose suggestion:ID 4.0mm
Super silent noise
Motor type and code:”C”:Coreless brushless DC motor with dual ball bearings (long lifetime 15,000hours)    “D”: Coreless brushless DC motor with dual ball bearings + outside controller (long lifetime 15,000hours);pump with outside controller can realize functions of PWM 0~5V speed adjustment, brake, instant starting work ; inner controller is no additional functions. 

A- Premium duty brush DC motor

lifetime 3,000hours,longer endurance lifetime than other normal DC membrane pump

B- Economical brush DC motor

lifetime:1,500hours

C- Coreless Brushless DC Motor

A brushless electronically commutated dc motor (electronics integrated in motor), the motor runs vibration and spark free, almost silently, is very dynamic and extremely durable, ideal life-time 15000 hours

D- Coreless Brushless DC motor with outer controller

With all advantages of coreless brushless DC motor, ideal life-time 15000 hours, and outer controller can realize more control functions of PWM or 0 -5V speed adjustment, brake, ~ instant starting work

H- Brushless DC Motor

Long lifetime 10000hour

         Wetted material options: 

  •     Optional membrane materials:  EPDM for normal air PTFE for corrosive air,like acid, alkali air, CHINAMFG etc.          
  •    Optional valve materials:   CHINAMFG for normal air FPM for corrosive air, like acid, alkali, ozone,etc.

Feature:

1.Highest Performance/Size Ratio
Innovative and efficient engineering designs enable the TM30A Series to push the performance envelope in a lightweight, compact size.
2.Performs Quieter
Optimized head, chamber, and flow path reduce noise without compromising performance.
3.Lasts Reliably Longer
Using the advanced diaphragm elastomer and superior brushless motor design sets the highest benchmark for service-free operation that exceeds 10,000 hours.
4.Uncontaminated flow
no contamination of the media due to oil-free operation
5.Little vibration
Because of leading edge technologies, top quality bearing, superior brushless motor
6.High level of gas tightness
thanks to stress-optimised structured diaphragm, newly-designed valves and sealing systems, precise placement of the pump head
7.Extreme chemical resistance
The use of chemically resistant materials optional such as FFPM,PTFE,FPM or other material combinations for the parts which allows the corrosive gas to be pumped.
8.Optimal solution for your application

a wide standard range of materials, motors , voltages configurates multiple components system selected

1. Industrial pressure and vacuum applications
2. Portable Analytical Instruments
3. Medical Diagnostic Equipment
4. Air Quality Sampling Monitors
5. Respiration Monitors
6. Gas or Odor Leak Detectors

etc..

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Power: Electric
Valve Body Type: Diaphragm
Diaphragm Material: Gas Air
Motor: DC Brushless Motor
Ideal Life Time: 15000 Hours
Max Flow Rate: 4L/Min
Customization:
Available

|

small vacuum pump

Where can individuals or businesses source small vacuum pumps for various applications?

Individuals and businesses looking to source small vacuum pumps for a wide range of applications have several options to consider. Here are common sources for acquiring small vacuum pumps:

1. Manufacturers and Authorized Dealers:

Contacting the manufacturers directly or their authorized dealers is often a reliable way to purchase small vacuum pumps. Manufacturers typically offer a wide selection of models and provide technical support. Authorized dealers can assist with product selection and may offer competitive pricing.

2. Industrial Suppliers:

Industrial supply companies and distributors often carry a variety of vacuum pumps. These suppliers cater to a range of industries, including manufacturing, research, and laboratories. They can provide competitive pricing and may offer bulk purchase discounts.

3. Laboratory Equipment Suppliers:

For those seeking vacuum pumps for laboratory or scientific applications, specialized laboratory equipment suppliers are a valuable resource. They offer pumps designed for precise and controlled vacuum needs.

4. Online Marketplaces:

Online marketplaces like Amazon, eBay, and Alibaba feature a wide array of small vacuum pumps from various manufacturers and sellers. Buyers can compare prices, read reviews, and often find both new and used pumps.

5. HVAC and Refrigeration Suppliers:

Heating, ventilation, air conditioning, and refrigeration (HVAC/R) suppliers may carry vacuum pumps suitable for HVAC system maintenance and refrigeration applications. These suppliers are often found locally.

6. Scientific and Research Institutions:

Scientific and research institutions occasionally sell surplus equipment, including vacuum pumps, through online auctions or specialized surplus equipment vendors.

7. Rental Services:

For short-term or occasional use, renting small vacuum pumps can be a cost-effective option. Equipment rental companies may offer various pump types for temporary applications.

8. Online Manufacturer Websites:

Visiting the official websites of vacuum pump manufacturers provides access to comprehensive product information, specifications, and contact details for sales and support.

9. Trade Shows and Exhibitions:

Attending industry-specific trade shows, exhibitions, and conferences can be an excellent opportunity to connect with manufacturers, distributors, and suppliers in person. It allows for hands-on product evaluation and networking.

10. Classified Ads and Auctions:

Classified advertisement websites and auction platforms may feature used vacuum pumps for sale. Buyers should exercise caution and thoroughly assess the condition of used equipment.

When sourcing small vacuum pumps, individuals and businesses should consider factors such as the pump’s specifications, warranty, customer support, and the reputation of the supplier or seller. It’s essential to choose a source that aligns with the specific requirements of the application and ensures the reliability and performance of the vacuum pump.

small vacuum pump

Are there maintenance requirements for keeping small vacuum pumps in good condition?

Yes, maintaining small vacuum pumps is essential to ensure their optimal performance, longevity, and reliability. Regular maintenance helps prevent breakdowns and reduces downtime. Here are some common maintenance requirements for small vacuum pumps:

1. Inspection:

Regularly inspect the pump for visible signs of wear, damage, or loose components. Look for leaks, cracks, or worn seals. Address any issues promptly to prevent further damage.

2. Oil Changes:

If your vacuum pump uses oil lubrication, adhere to the manufacturer’s recommendations for oil changes. Regular oil changes help maintain proper lubrication, preventing excessive wear on internal components.

3. Filter Replacement:

Filters in the vacuum system should be checked and replaced as needed. Clogged or dirty filters can hinder pump performance and may allow contaminants to enter the system.

4. Lubrication:

For pumps that require lubrication, ensure that the lubricant levels are within the recommended range. Lubricate bearings and moving parts according to the manufacturer’s guidelines.

5. Seal Inspection:

Inspect the seals and gaskets for signs of wear, cracks, or deterioration. Damaged seals can lead to air leaks, reducing vacuum efficiency.

6. Cleaning:

Keep the exterior of the pump clean and free from debris. Dust and dirt can affect cooling and ventilation, potentially causing the pump to overheat.

7. Performance Testing:

Regularly test the pump’s performance to ensure it meets the required vacuum level and flow rate. Adjust or recalibrate as necessary to maintain consistent performance.

8. Safety Checks:

Perform safety checks to ensure that all safety features and mechanisms are in working order. This is particularly important in medical and laboratory settings where the safe operation of the pump is critical.

9. Vibration Analysis:

Monitor vibration levels in the pump. Excessive vibration can indicate misalignment or worn components. Address vibration issues to prevent further damage.

10. Maintenance Logs:

Keep detailed maintenance records, including dates of inspections, repairs, and replacements. This helps track the pump’s maintenance history and plan future maintenance tasks.

11. Professional Service:

For more complex maintenance tasks or repairs, consider having the pump serviced by a professional technician or the manufacturer’s service center. They can perform in-depth diagnostics and repairs as needed.

It’s important to follow the manufacturer’s maintenance guidelines and recommendations specific to your vacuum pump model. Proper maintenance not only prolongs the pump’s life but also ensures it operates efficiently and safely, reducing the risk of unexpected failures.

small vacuum pump

Can you explain the different types of small vacuum pumps available in the market?

Certainly, there are several types of small vacuum pumps available in the market, each with unique working principles and applications. Here are some of the most common types:

1. Diaphragm Vacuum Pumps:

Diaphragm vacuum pumps use a flexible diaphragm that moves up and down to create suction. These pumps are oil-free, making them ideal for applications where contamination from lubricants is a concern, such as in laboratories. They are commonly used in vacuum filtration, sample concentration, and scientific research.

2. Rotary Vane Vacuum Pumps:

Rotary vane vacuum pumps operate by using vanes that rotate inside a cylindrical chamber. As the vanes move, they create a vacuum by trapping and compressing gas. These pumps are known for their high efficiency and reliability. They are used in applications like rotary evaporation, HVAC systems, and industrial processes.

3. Piston (Reciprocating) Vacuum Pumps:

Piston vacuum pumps use a piston-cylinder arrangement to create a vacuum. They are often found in smaller, portable units and are suitable for applications requiring intermittent or continuous vacuum, such as refrigeration evacuation, air sampling, and medical devices.

4. Scroll Vacuum Pumps:

Scroll vacuum pumps consist of two interleaved spiral scrolls that move in opposite directions. This design generates a series of crescent-shaped pockets, trapping and compressing gas as they move. Scroll pumps are known for their quiet operation and are used in applications like semiconductor manufacturing, analytical instruments, and vacuum ovens.

5. Venturi Vacuum Pumps:

Venturi vacuum pumps operate using the Venturi effect, where a high-speed fluid (usually air or gas) creates a vacuum when passing through a constriction. These pumps are simple and compact, making them suitable for portable and lightweight applications like vacuum pick-and-place systems and vacuum grippers.

6. Turbomolecular Vacuum Pumps:

Turbomolecular vacuum pumps are high-speed pumps that use rotating blades to capture and accelerate gas molecules out of the vacuum chamber. They are capable of achieving very high vacuum levels and are used in ultra-high vacuum applications, such as electron microscopy, mass spectrometry, and semiconductor manufacturing.

Choosing the right type of small vacuum pump depends on factors such as the required vacuum level, flow rate, contamination sensitivity, and application-specific requirements. It’s essential to consider these factors when selecting a vacuum pump to ensure it meets your needs effectively.

China wholesaler -65kpa Flow 4L/Min Small Electric Vacuum Pump   with Great quality China wholesaler -65kpa Flow 4L/Min Small Electric Vacuum Pump   with Great quality
editor by CX 2024-04-13

China factory Laboratory Portable Small Oil Free Electric Diaphragm Vacuum Pump vacuum pump booster

Product Description

Laboratory Portable Small Oil Free Electric Diaphragm Vacuum Pump
 

Providing vacuum condition for the processes of evaporation, distillation, crystallization, drying, sublimation, filtration and decompression and degassing. And solvent recollection, extracting for various materials with severe toxicity, flammability and probability of explosion, strong acid and alkali. Besides applicable occasion of circulating water vacuum pump and spiral slice vacuum pump, it also can be used in fields like product analysis of medical treatment and medication detective techniques.

acking:

  • The glass parts will be wrapped with foam, then put into the carton; the mainbody portion will be packde in wooden case.
  • Both neutral and cuistomized packing are available.

Shipping:

  • We can ship the goods to you by international express,such as DHL, UPS, TNT and so on. And you can choose the appropriate way based on your timeline and budget. Besides, you can choose to use your own shipping agent.
Shipping method Note
Express Door to door, very convenient, don’t need to clearance or pick-up
By air

Airport to airport, you need to do the customs clearance and pick up  the

goods at your local airport,which you can have a local shipping agent to do for you.

By sea

Port to port and you need to do the customs clearance and pick-up the goods

at your local port, which you can have a local shipping agent to do for you.

Pre-sale Service:
–24 Hours online service for your consult.
–Help choose right model,and a series of service,person,advise. 
–Give you best offer.
–Provide discount for many sets order.
–Do customer’s request.
–Choose payment term you convienent.
–Promptly production and delivery,inform you in time.
–Can provide invoice value as you like to decrease your tax. 

After sale service:
–1 year warranty service and all life maintenance.
–Technical Egineer are avalible for oversea trainning.
–Free change for some parts.
–Remote control technical consult.
–Free installation DVD.
–Maintenance plan.

Company Introduciton:

HangZhou CHINAMFG Machinery and Instrument Equipment Co., Ltd. is specialized in R & D, production, sales, teaching and chemical biology pharmacy equipment integrated company. The main products are rotary evaporator, jacketed glass reactor, single layer glass reactor, circulating water vacuum pumplow temperature reaction bath (slot)low temperature cooling fluid circulating pump(cool chiller)vacuum drying ovenblast drying ovenfreeze dryerwater/oil bathmagnetic heating stirrer, overhead mixerultrasonic cleaning machinelift platform, etc. Besides, we act as agents of some domestic and foreign famous enterprise products, sustaining high praise in domestic junior colleges and universities, scientific research units, etc. Our products are sold to USA, Australia, Asia, Brazil, Iran, Egypt etc. countries and our customers have been fully affirmation.

Factory Size: 1,362
Main Markets: Central America, Mid East, Oceania, Africa, South America

FAQ:

1.What’s the minimum order quantity?
One set at present.

2.What kind of payment term do you accept?
Normally we accept TT, Paypal, Western Union, Alibaba Escrow, and L/C. The exactly term will be discussed during the deal.

3. How will you delivery these goods?
It will be decided according to your quantity. Normally we will choose International Express,  Air and sea.

4.How will package glass equipment?
We package these glass equipment in good and Non fumigation standard wooden case.

5.Can you accept OEM terms?
Sure.

6.How to choose suitable equipment ?
You tell us your requirements (For example: capacity, temperature range, pressure, etc ), we will recommend you the best suitable equipment. 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Oil or Not: Oil Free
Structure: Diaphragm Vacuum Pump
Exhauster Method: Positive Displacement Pump
Vacuum Degree: High Vacuum
Work Function: Mainsuction Pump
Working Conditions: Dry

small vacuum pump

Are there any environmentally friendly options among small vacuum pumps?

Yes, there are environmentally friendly options among small vacuum pumps that aim to minimize their impact on the environment. These options are designed to be energy-efficient, reduce emissions, and use sustainable materials. Here are some eco-friendly aspects to consider when choosing small vacuum pumps:

1. Oil-Free Vacuum Pumps:

Oil-free vacuum pumps are considered more environmentally friendly than oil-lubricated pumps. They eliminate the need for oil changes and reduce the risk of oil contamination in the environment. Oil-free pumps are commonly used in laboratories, medical equipment, and industries with stringent environmental regulations.

2. Energy Efficiency:

Energy-efficient vacuum pumps consume less electricity, which not only reduces operating costs but also lowers greenhouse gas emissions associated with power generation. Look for pumps with high energy efficiency ratings, and consider those equipped with variable speed drives (VSDs) that adjust power consumption according to demand.

3. Noise Reduction:

Quieter vacuum pumps contribute to a more pleasant and less disruptive work environment. Low-noise pumps are designed with noise reduction features, making them suitable for noise-sensitive areas and minimizing noise pollution.

4. Longevity and Durability:

Vacuum pumps built to last have a longer service life, reducing the frequency of replacements and the associated environmental impact. Durable pumps also help reduce waste and resource consumption.

5. Sustainable Materials:

Some manufacturers prioritize the use of sustainable and recyclable materials in their pump designs. Check if a pump is made from environmentally friendly materials and if the manufacturer has sustainable practices in place.

6. Compliance with Environmental Standards:

Choose vacuum pumps that meet or exceed environmental standards and regulations, such as RoHS (Restriction of Hazardous Substances) and REACH (Registration, Evaluation, Authorization, and Restriction of Chemicals). Compliance indicates a commitment to environmental responsibility.

7. Emission Reduction:

Certain vacuum pump technologies, like dry screw pumps, are designed to minimize emissions and ensure that no harmful substances are released into the atmosphere during operation.

8. Recycling and Disposal:

Consider the ease of recycling or disposing of a vacuum pump at the end of its life cycle. Some manufacturers provide recycling programs for their products, reducing the environmental impact of disposal.

When selecting an environmentally friendly small vacuum pump, it’s essential to research the manufacturer’s sustainability practices, review product specifications, and look for certifications that indicate eco-friendly features. Additionally, consider how the pump’s performance and efficiency align with your specific application needs while keeping environmental considerations in mind.

By choosing environmentally friendly vacuum pumps, you can reduce your carbon footprint, lower operating costs, and contribute to a more sustainable and responsible approach to vacuum technology.

small vacuum pump

Can you describe the typical power sources for small vacuum pumps?

Small vacuum pumps can be powered by various sources, depending on their design, size, and intended applications. Here are the typical power sources for small vacuum pumps:

1. Electric Power:

Most small vacuum pumps are electrically powered and use standard alternating current (AC) or direct current (DC) sources. Electric vacuum pumps are versatile and widely used in laboratory equipment, industrial processes, and portable devices. They can be plugged into wall outlets or connected to DC power sources such as batteries or power supplies.

2. Battery Power:

Portable and handheld devices often incorporate battery-powered small vacuum pumps. These pumps are ideal for applications where mobility is crucial, such as fieldwork, medical instruments, and handheld vacuum aspirators. Batteries can be rechargeable or disposable, depending on the device’s requirements.

3. Compressed Air:

In some applications, small vacuum pumps are driven by compressed air or other gases. These pumps are known as pneumatic or air-operated vacuum pumps. They are commonly used in industrial automation, vacuum gripping systems, and manufacturing processes where compressed air is readily available.

4. Hydraulic Power:

In specialized applications, small vacuum pumps can be hydraulically powered. These pumps are often used in systems where hydraulic power sources are already in use. They are less common than electric or pneumatic options but find application in specific industries like automotive manufacturing.

5. Solar Power:

In remote or off-grid locations, small vacuum pumps can be powered by solar panels and photovoltaic systems. Solar-powered vacuum pumps are environmentally friendly and energy-efficient, making them suitable for sustainable and remote applications.

6. Hand Cranks:

For ultra-portable and emergency situations, some small vacuum pumps can be hand-operated using a manual hand crank. These pumps are typically compact and lightweight, making them suitable for backup or low-volume vacuum needs.

7. Engine-Driven:

In certain industrial and automotive applications, small vacuum pumps can be driven by an internal combustion engine. These pumps are commonly used in power brake boosters and emission control systems in vehicles.

The choice of power source for a small vacuum pump depends on factors such as the application’s mobility requirements, availability of power sources, energy efficiency goals, and environmental considerations. Manufacturers design vacuum pumps to be compatible with various power sources to meet diverse application needs.

small vacuum pump

Can you explain the different types of small vacuum pumps available in the market?

Certainly, there are several types of small vacuum pumps available in the market, each with unique working principles and applications. Here are some of the most common types:

1. Diaphragm Vacuum Pumps:

Diaphragm vacuum pumps use a flexible diaphragm that moves up and down to create suction. These pumps are oil-free, making them ideal for applications where contamination from lubricants is a concern, such as in laboratories. They are commonly used in vacuum filtration, sample concentration, and scientific research.

2. Rotary Vane Vacuum Pumps:

Rotary vane vacuum pumps operate by using vanes that rotate inside a cylindrical chamber. As the vanes move, they create a vacuum by trapping and compressing gas. These pumps are known for their high efficiency and reliability. They are used in applications like rotary evaporation, HVAC systems, and industrial processes.

3. Piston (Reciprocating) Vacuum Pumps:

Piston vacuum pumps use a piston-cylinder arrangement to create a vacuum. They are often found in smaller, portable units and are suitable for applications requiring intermittent or continuous vacuum, such as refrigeration evacuation, air sampling, and medical devices.

4. Scroll Vacuum Pumps:

Scroll vacuum pumps consist of two interleaved spiral scrolls that move in opposite directions. This design generates a series of crescent-shaped pockets, trapping and compressing gas as they move. Scroll pumps are known for their quiet operation and are used in applications like semiconductor manufacturing, analytical instruments, and vacuum ovens.

5. Venturi Vacuum Pumps:

Venturi vacuum pumps operate using the Venturi effect, where a high-speed fluid (usually air or gas) creates a vacuum when passing through a constriction. These pumps are simple and compact, making them suitable for portable and lightweight applications like vacuum pick-and-place systems and vacuum grippers.

6. Turbomolecular Vacuum Pumps:

Turbomolecular vacuum pumps are high-speed pumps that use rotating blades to capture and accelerate gas molecules out of the vacuum chamber. They are capable of achieving very high vacuum levels and are used in ultra-high vacuum applications, such as electron microscopy, mass spectrometry, and semiconductor manufacturing.

Choosing the right type of small vacuum pump depends on factors such as the required vacuum level, flow rate, contamination sensitivity, and application-specific requirements. It’s essential to consider these factors when selecting a vacuum pump to ensure it meets your needs effectively.

China factory Laboratory Portable Small Oil Free Electric Diaphragm Vacuum Pump   vacuum pump booster	China factory Laboratory Portable Small Oil Free Electric Diaphragm Vacuum Pump   vacuum pump booster
editor by CX 2024-04-11

China manufacturer Small Electric 2BV2 060 Water Ring Vacuum Pump with Best Sales

Product Description

Application scope and characteristics:

Greentech International (Xihu (West Lake) Dis.) Co., Ltd is the professional vacuum pump supplier. 2BE1 series water ring vacuum pumps and compressors are the products with high efficiency and economic power, which are manufactured by our company integrating with the advanced technology of the imported products from Germany.

These series products adopt CHINAMFG and single action structure and have many advantages, such as, compact structure, convenient maintenance, reliable running, high efficiency and economic power.

The main characteristics of 2BE1 series products:

All the bearings are the imported products with the brand name of CHINAMFG orNTN for ensuring the precise orientation and the high stability during the working of the pump.

The material of the impeller is QT400 nodular iron or stainless steel for ensuring the stability when the pump works under the rigorous condition and can extend the lifetime of the pump.

The casing is made of steel or stainless steel plates to extend the lifetime of the 2BE1 series pumps.

The shaft bushing is made of stainless steel to improve the lifetime of the pump 5 times than the normal material.

The V-belt pulley (when the pump is driven by the belt) is used the high precise pulley with taper bushing to keep the reliability of the pump and extend its life. And it is also easy to mantle and dismantle.

The coupling is used to drive the pump directly. The flexible part connecting the 2 half coupling is made of polyurethane that makes the pump more reliable.

The unique design to set the separator above the pump saves the space and decreases the noise efficiently.

All the parts are cast by the resin sands that make the pump surface very smooth. It is not necessary to cover the surface of the pumps with putty and gives out the heat efficiently.

The mechanical seals (optional) are used the imported products to avoid the leakage when the pump works for a long time.

Type Speed
(Drive type)
r/min
Shaft power
kW
Motor power
kW
Motor
type
Limited vacuum
mbar
  Weight
(Whole set)
kg
Suction capacity
m 3 /h m 3 /min
2BE1 151-0 1450(D)
1100(V)
1300(V)
1625(V)
1750(V)
10.8
7.2
9.2
13.2
14.8
15
11
11
15
18.5
Y160L-4
Y160M-4
Y160M-4
Y160L-4
Y180M-4
33mbar
(-0.098MPa)
405
300
360
445
470
6.8
5.0
6.0
7.4
7.8
469
428
444
469
503
2BE1 152-0 1450(D)
1100(V)
1300(V)
1625(V)
1750(V)
12.5
8.3
10.5
15.0
17.2
15
11
15
18.5
22
Y160L-4
Y160M-4
Y160L-4
Y180M-4
Y180L-4
33mbar
(-0.098MPa)
465
340
415
510
535
7.8
5.7
6.9
8.5
8.9
481
437
481
515
533
2BE1 153-0 1450(D)
1100(V)
1300(V)
1625(V)
1750(V)
16.3
10.6
13.6
19.6
22.3
18.5
15
18.5
22
30
Y180M-4
Y160L-4
Y180M-4
Y180L-4
Y200L-4
33mbar
(-0.098MPa)
600
445
540
660
700
10.0
7.4
9.0
11.0
11.7
533
480
533
551
601
2BE1 202-0 970(D)
790(V)
880(v)
1100(V)
1170(V)
1300(V)
17
14
16
22
25
30
22
18.5
18.5
30
30
37
Y200L2-6
Y180M-4
Y180M-4
Y200L-4
Y200L-4
Y225S-4
33mbar
(-0.098MPa)
760
590
670
850
890
950
12.7
9.8
11.2
14.2
14.8
15.8
875
850
850
940
945
995
2BE1 203-0 970(D)
790(V)
880(V)
1100(V)
1170(V)
1300(V)
27
20
23
33
37
45
37
30
30
45
45
55
Y250M-6
Y200L-4
Y200L-4
Y225M-4
Y225M-4
Y250M-4
33mbar
(-0.098MPa)
1120
880
1000
1270
1320
1400
18.7
14.7
16.7
21.2
22.0
23.3
1065
995
995
1080
1085
1170
2BE1 252-0 740(D)
558(V)
660(V)
832(V)
885(V)
938(V)
38
26
31.8
49
54
60
45
30
37
55
75
75
Y280M-8
Y200L-4
Y225S-4
Y250M-4
Y280S-4
Y280S-4
33mbar
(-0.098MPa)
1700
1200
1500
1850
2000
2100
28.3
20.0
25.0
30.8
33.3
35.0
1693
1460
1515
1645
1805
1805
2BE1 253-0 740(D)
560(V)
660(V)
740(V)
792(V)
833(V)
885(V)
938(V)
54
37
45
54
60
68
77
86
75
45
55
75
75
90
90
110
Y315M-8
Y225M-4
Y250M-4
Y280S-4
Y280S-4
Y280M-4
Y280M-4
Y315S-4
33mbar
(-0.098MPa)
2450
1750
2140
2450
2560
2700
2870
3571
40.8
29.2
35.7
40.8
42.7
45.0
47.8
50.3
2215
1695
1785
1945
1945
2055
2060
2295
2BE1 303-0 740(D)
590(D)
466(V)
521(V)
583(V)
657(V)
743(V)
98
65
48
54
64
78
99
110
75
55
75
75
90
132
Y315L2-8
Y315L2-10
Y250M-4
Y280S-4
Y280S-4
Y280M-4
Y315M-4
33mbar
(-0.098MPa)
4000
3200
2500
2800
3100
3580
4000
66.7
53.3
41.7
46.7
51.7
59.7
66.7
3200
3200
2645
2805
2810
2925
3290
2BE1 305-1
2BE1 306-1
740(D)
590(D)
490(V)
521(V)
583(V)
657(V)
743(V)
102
70
55
59
68
84
103
132
90
75
75
90
110
132
Y355M1-8
Y355M1-10
Y280S-4
Y280S-4
Y280M-4
Y315S-4
Y315M-4
160mbar
(-0.085MPa)
4650
3750
3150
3320
3700
4130
4650
77.5
62.5
52.5
55.3
61.2
68.8
77.5
3800
3800
2950
3000
3100
3300
3450
2BE1 353-0 590(D)
390(V)
415(V)
464(V)
520(V)
585(V)
620(V)
660(V)
121
65
70
81
97
121
133
152
160
75
90
110
132
160
160
185
Y355L2-10
Y280S-4
Y280M-4
Y315S-4
Y315M-4
Y315L1-4
Y315L1-4
Y315L2-4
33mbar
(-0.098MPa)
5300
3580
3700
4100
4620
5200
5500
5850
88.3
59.7
61.7
68.3
77.0
86.7
91.7
97.5
4750
3560
3665
3905
4040
4100
4100
4240
2BE1 355-1
2BE1 356-1
590(D)
390(V)
435(V)
464(V)
520(V)
555(V)
585(V)
620(V)
130
75
86
90
102
115
130
145
160
90
110
110
132
132
160
185
Y355L2-10
Y280M-4
Y315S-4
Y315S-4
Y315M-4
Y315M-4
Y315L1-4
Y315L2-4
160mbar
(-0.085MPa)
6200
4180
4600
4850
5450
5800
6100
6350
103.3
69.7
76.7
80.8
90.8
98.3
101.7
105.8
5000
3920
4150
4160
4290
4300
4350
4450
2BE1 403-0 330(V)
372(V)
420(V)
472(V)
530(V)
565(V)
97
110
131
160
203
234
132
132
160
200
250
280
Y315M-4
Y315M-4
Y315L1-4
Y315L2-4
Y355M2-4
Y355L1-4
33mbar
(-0.098MPa)
5160
5700 6470
7380
8100
8600
86.0
95.0
107.8
123.0
135.0
143.3
5860
5870
5950
6190
6630
6800
2BE1 405-1
2BE1 406-1
330(V)
372(V)
420(V)
472(V)
530(V)
565(V)
100
118
140
170
206
235
132
160
185
200
250
280
Y315M-4
Y315L1-4
Y315L2-4
Y315L2-4
Y355M2-4
Y355L1-4
160mbar
(-0.085MPa)
6000
6700
7500
8350
9450
15710
100.0
111.7
125.0
139.2
157.5
168.3
5980
6070
6200
6310
6750
6920

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Oil or Not: Oil Free
Structure: Rotary Vacuum Pump
Exhauster Method: Kinetic Vacuum Pump
Vacuum Degree: High Vacuum
Work Function: Pre-Suction Pump
Working Conditions: Wet
Customization:
Available

|

small vacuum pump

Are there any environmentally friendly options among small vacuum pumps?

Yes, there are environmentally friendly options among small vacuum pumps that aim to minimize their impact on the environment. These options are designed to be energy-efficient, reduce emissions, and use sustainable materials. Here are some eco-friendly aspects to consider when choosing small vacuum pumps:

1. Oil-Free Vacuum Pumps:

Oil-free vacuum pumps are considered more environmentally friendly than oil-lubricated pumps. They eliminate the need for oil changes and reduce the risk of oil contamination in the environment. Oil-free pumps are commonly used in laboratories, medical equipment, and industries with stringent environmental regulations.

2. Energy Efficiency:

Energy-efficient vacuum pumps consume less electricity, which not only reduces operating costs but also lowers greenhouse gas emissions associated with power generation. Look for pumps with high energy efficiency ratings, and consider those equipped with variable speed drives (VSDs) that adjust power consumption according to demand.

3. Noise Reduction:

Quieter vacuum pumps contribute to a more pleasant and less disruptive work environment. Low-noise pumps are designed with noise reduction features, making them suitable for noise-sensitive areas and minimizing noise pollution.

4. Longevity and Durability:

Vacuum pumps built to last have a longer service life, reducing the frequency of replacements and the associated environmental impact. Durable pumps also help reduce waste and resource consumption.

5. Sustainable Materials:

Some manufacturers prioritize the use of sustainable and recyclable materials in their pump designs. Check if a pump is made from environmentally friendly materials and if the manufacturer has sustainable practices in place.

6. Compliance with Environmental Standards:

Choose vacuum pumps that meet or exceed environmental standards and regulations, such as RoHS (Restriction of Hazardous Substances) and REACH (Registration, Evaluation, Authorization, and Restriction of Chemicals). Compliance indicates a commitment to environmental responsibility.

7. Emission Reduction:

Certain vacuum pump technologies, like dry screw pumps, are designed to minimize emissions and ensure that no harmful substances are released into the atmosphere during operation.

8. Recycling and Disposal:

Consider the ease of recycling or disposing of a vacuum pump at the end of its life cycle. Some manufacturers provide recycling programs for their products, reducing the environmental impact of disposal.

When selecting an environmentally friendly small vacuum pump, it’s essential to research the manufacturer’s sustainability practices, review product specifications, and look for certifications that indicate eco-friendly features. Additionally, consider how the pump’s performance and efficiency align with your specific application needs while keeping environmental considerations in mind.

By choosing environmentally friendly vacuum pumps, you can reduce your carbon footprint, lower operating costs, and contribute to a more sustainable and responsible approach to vacuum technology.

small vacuum pump

What factors should one consider when choosing a small vacuum pump for a specific task?

Choosing the right small vacuum pump for a specific task is essential to ensure optimal performance and efficiency. Several factors should be taken into account when making your selection:

1. Vacuum Level Requirements:

Determine the required vacuum level for your application. Some tasks may require a high vacuum level, while others can be accomplished with a lower vacuum. The pump’s ultimate vacuum capability should match your needs.

2. Flow Rate:

Consider the volume of gas or air that needs to be evacuated or processed per unit of time. Choose a pump with an adequate flow rate to meet your application’s requirements. Insufficient flow can lead to slow or inefficient processes.

3. Type of Gas:

Identify the type of gas or vapor you will be handling. Some gases may be corrosive, reactive, or incompatible with certain pump materials. Ensure that the pump you select is compatible with the gases involved in your task.

4. Contamination Sensitivity:

If your application demands a clean and contamination-free vacuum environment, consider pumps that operate without oil lubrication, such as diaphragm or scroll pumps. These pumps are suitable for applications like analytical instruments and cleanroom environments.

5. Power Source:

Determine the available power source for your pump. Small vacuum pumps can be electric, battery-powered, pneumatic, or even hand-operated. Choose a power source that aligns with your application’s requirements and availability.

6. Portability:

If mobility is essential, opt for a compact and lightweight vacuum pump. Battery-powered or pneumatic pumps are often chosen for portable applications. Consider the size and weight of the pump relative to the device or equipment it will be integrated into.

7. Noise Level:

Assess the noise level generated by the pump. Some small vacuum pumps operate quietly, which is advantageous in noise-sensitive environments like laboratories and medical facilities. Low-noise pumps are also suitable for handheld devices.

8. Maintenance Requirements:

Consider the maintenance needs of the pump. Some pumps have simpler designs and require less frequent servicing. Evaluate factors such as filter replacement, lubrication, and ease of access for maintenance tasks.

9. Cost and Budget:

Take into account your budget constraints. Small vacuum pumps come in a range of price points, so choose one that offers the best balance between performance and cost while meeting your specific requirements.

10. Environmental Considerations:

Consider environmental factors, especially if your application is in a sensitive or regulated area. Assess energy efficiency, emissions, and any environmental certifications or standards that the pump may need to meet.

11. Application Specifics:

Finally, closely examine the unique requirements of your specific task. Each application may have its own considerations, so tailor your choice to suit the precise demands of your project or process.

By carefully evaluating these factors, you can select the most appropriate small vacuum pump for your specific task, ensuring that it performs efficiently and effectively.

small vacuum pump

What industries commonly rely on small vacuum pumps for their operations?

Small vacuum pumps play a crucial role in various industries, offering versatile solutions for a wide range of applications. Here are industries that commonly rely on small vacuum pumps for their operations:

1. Laboratory and Scientific Research:

Small vacuum pumps are essential in laboratories for applications such as vacuum filtration, rotary evaporation, freeze drying, and sample concentration. Scientific research in fields like chemistry, biology, and physics often relies on precise vacuum control.

2. Healthcare and Medical:

In the medical and healthcare industry, small vacuum pumps are used in devices like medical aspirators, wound care systems, and diagnostic equipment. They help create the necessary vacuum for procedures such as suctioning, wound drainage, and blood collection.

3. Manufacturing and Industrial Processes:

Manufacturing industries utilize small vacuum pumps in various processes, including vacuum packaging, degassing of liquids and resins, and handling of materials. Industries such as food processing, electronics, and plastics rely on vacuum technology for efficient production.

4. HVAC and Refrigeration:

In heating, ventilation, air conditioning (HVAC), and refrigeration systems, small vacuum pumps are used for evacuating and degassing refrigerant lines. This ensures optimal system performance and prevents issues like moisture contamination.

5. Automotive and Aerospace:

The automotive and aerospace industries use small vacuum pumps in applications like power brake boosters, emission control systems, and aircraft de-icing systems. These pumps play a crucial role in ensuring safety and performance in transportation equipment.

6. Environmental Monitoring and Analysis:

Environmental monitoring equipment, including air and water quality analyzers, often relies on small vacuum pumps for sample collection and analysis. They help ensure accurate data in environmental studies and compliance monitoring.

7. Semiconductor and Electronics:

In semiconductor manufacturing and electronics assembly, small vacuum pumps are used in vacuum pick-and-place systems, surface mount technology (SMT) equipment, and wafer handling. They contribute to precision and reliability in microelectronics production.

8. Research and Development:

Research and development efforts in various industries, including materials science, nanotechnology, and aerospace, rely on small vacuum pumps for experiments and prototyping. Vacuum chambers are commonly used in R&D to simulate specific environmental conditions.

9. Pharmaceuticals and Biotechnology:

The pharmaceutical and biotechnology industries use small vacuum pumps for processes such as filtration, lyophilization (freeze drying), and drug formulation. These pumps are critical for drug manufacturing and research.

10. Food and Beverage:

In the food and beverage industry, small vacuum pumps are used in vacuum packaging machines to extend the shelf life of perishable products. They help remove air from packaging, preventing spoilage and preserving freshness.

11. Energy and Power Generation:

Small vacuum pumps are used in power plants and energy facilities for applications like turbine sealing and transformer evacuation. They contribute to the efficiency and reliability of power generation systems.

These industries rely on small vacuum pumps to perform critical functions, enhance product quality, and optimize various processes. The versatility and efficiency of small vacuum pumps make them indispensable tools in modern industrial and scientific applications.

China manufacturer Small Electric 2BV2 060 Water Ring Vacuum Pump   with Best Sales China manufacturer Small Electric 2BV2 060 Water Ring Vacuum Pump   with Best Sales
editor by CX 2024-04-10

China Professional Mini Vacuum Suction Circulation Small Diaphragm Electric Air Pump wholesaler

Product Description

Mini Vacuum Suction Circulation Small Diaphragm Electric Air Pumpmp

 

Product Description

 

Product Application

The pump is mainly used in electrical products, industrial products, medical equipment, analytical instruments, chemical and production engineering and supporting a variety of precision instruments, can work long hours.

 

Product Feature:

1.Hight Performance&Low Noise

2.High Quality with Patent Technology

3.CE ISO9001 Approved

4.Compact Structure&Oil-Free&Maintenance-Free&Corrosion Resistance

5.Mainly used in household appliances, laboratory equipment, environmental monitoring, gas  monitoring, automotive tires and other fields.

 

Product Parameters

 

Technical Parameter

Product Name Micro Diaphragm Air Pump
Model 4A12A30R48B 4A12B25R37B 4A12C20R29B 4A12D16R29B
Free Flow Rate 8/10/15/18L
Max Pressure 1.6/2.0/2.5/3.0 Bar
Vacuum -70/75/80Kpa
Motor Type DC
DC Voltage 12/24V
Power 6/10/15/18W
Lifetime 800-4000H
Dimension 101/70/40MM
Weight 298g
Trade Term EXW,FOB and CIF
Freight Air,Sea,Express (door to door shipping DHL EMS FEDEX UPS)

 

 

 

ONEREEL is specialized in the design and manufacture Steel Spools, Plastic Spools, Cable roller, Yarn Bobbin,  aluminum spool , Cable Reel Stand,  Sheave Pulley, Cable Conveyor, Hydraulic Puller Tensioner, Gin Poles, Cable Pulling Winch, Safety Tools, Wire Grip, Plastic Parts, and Pump in the industry since 1991. All of our customer spool and wire carrier are engineered and manufactured in our 120,000 square foot state-of-the-art manufacturing plant located in HangZhou, ZHangZhoug.

ONEREEL is specialized in the manufacture of reels for cables and electric wires, iron axles, disc spool for steel cables and various delivery reels. With strong technological capabilities and full series of production equipment. All of our products go through the dynamic and static balance tests. We have passed the quality system certification ISO9001:2000 to ensure the product quality. Following the standards of GB4004-83, JB/T8997, DIN46395 and DIN46397 in productions. 

 

 

Hot Product

Our Customer

 

 

Packaging & Shipping

 

Packaging & Transportation

 

Certifications

 

Authoritative Certificate

 

FAQ

 

FAQ

Q1: Can I get samples?
A: According to spool model and material, we will advise.
Q2: How long is the sample LEAD TIME? 
A: For existing samples, it takes 2-3 days. If no stock, we will advise lead time.
Q3: Can you develop new products?
A: Yes, we have new products developing ability and we are good at developing new mold.
Q4: How much is the freight charge?
A: It depends on spool package volume, if small quantity, volume and urgent goods, 
we may advise FEDEX or other couriers’ charge for your check. 
If volume bigger and by seaway suitable, we provide FOB or CIF price to you.
Q5: What format of the file do you need if I want my own design?
A: We have our own mound workshop and can provide spool or other plastic product developing and injection service.
Q6: How about your service?
A: We have pre-sale service, in-sale service and after-sale service. As “Customer First” is the most important principle of company operation.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Year
Warranty: 1 Year
Certification: ISO9001:2008, RoHS, CE
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Order Sample

red,1
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

small vacuum pump

Where can individuals or businesses source small vacuum pumps for various applications?

Individuals and businesses looking to source small vacuum pumps for a wide range of applications have several options to consider. Here are common sources for acquiring small vacuum pumps:

1. Manufacturers and Authorized Dealers:

Contacting the manufacturers directly or their authorized dealers is often a reliable way to purchase small vacuum pumps. Manufacturers typically offer a wide selection of models and provide technical support. Authorized dealers can assist with product selection and may offer competitive pricing.

2. Industrial Suppliers:

Industrial supply companies and distributors often carry a variety of vacuum pumps. These suppliers cater to a range of industries, including manufacturing, research, and laboratories. They can provide competitive pricing and may offer bulk purchase discounts.

3. Laboratory Equipment Suppliers:

For those seeking vacuum pumps for laboratory or scientific applications, specialized laboratory equipment suppliers are a valuable resource. They offer pumps designed for precise and controlled vacuum needs.

4. Online Marketplaces:

Online marketplaces like Amazon, eBay, and Alibaba feature a wide array of small vacuum pumps from various manufacturers and sellers. Buyers can compare prices, read reviews, and often find both new and used pumps.

5. HVAC and Refrigeration Suppliers:

Heating, ventilation, air conditioning, and refrigeration (HVAC/R) suppliers may carry vacuum pumps suitable for HVAC system maintenance and refrigeration applications. These suppliers are often found locally.

6. Scientific and Research Institutions:

Scientific and research institutions occasionally sell surplus equipment, including vacuum pumps, through online auctions or specialized surplus equipment vendors.

7. Rental Services:

For short-term or occasional use, renting small vacuum pumps can be a cost-effective option. Equipment rental companies may offer various pump types for temporary applications.

8. Online Manufacturer Websites:

Visiting the official websites of vacuum pump manufacturers provides access to comprehensive product information, specifications, and contact details for sales and support.

9. Trade Shows and Exhibitions:

Attending industry-specific trade shows, exhibitions, and conferences can be an excellent opportunity to connect with manufacturers, distributors, and suppliers in person. It allows for hands-on product evaluation and networking.

10. Classified Ads and Auctions:

Classified advertisement websites and auction platforms may feature used vacuum pumps for sale. Buyers should exercise caution and thoroughly assess the condition of used equipment.

When sourcing small vacuum pumps, individuals and businesses should consider factors such as the pump’s specifications, warranty, customer support, and the reputation of the supplier or seller. It’s essential to choose a source that aligns with the specific requirements of the application and ensures the reliability and performance of the vacuum pump.

small vacuum pump

Are there maintenance requirements for keeping small vacuum pumps in good condition?

Yes, maintaining small vacuum pumps is essential to ensure their optimal performance, longevity, and reliability. Regular maintenance helps prevent breakdowns and reduces downtime. Here are some common maintenance requirements for small vacuum pumps:

1. Inspection:

Regularly inspect the pump for visible signs of wear, damage, or loose components. Look for leaks, cracks, or worn seals. Address any issues promptly to prevent further damage.

2. Oil Changes:

If your vacuum pump uses oil lubrication, adhere to the manufacturer’s recommendations for oil changes. Regular oil changes help maintain proper lubrication, preventing excessive wear on internal components.

3. Filter Replacement:

Filters in the vacuum system should be checked and replaced as needed. Clogged or dirty filters can hinder pump performance and may allow contaminants to enter the system.

4. Lubrication:

For pumps that require lubrication, ensure that the lubricant levels are within the recommended range. Lubricate bearings and moving parts according to the manufacturer’s guidelines.

5. Seal Inspection:

Inspect the seals and gaskets for signs of wear, cracks, or deterioration. Damaged seals can lead to air leaks, reducing vacuum efficiency.

6. Cleaning:

Keep the exterior of the pump clean and free from debris. Dust and dirt can affect cooling and ventilation, potentially causing the pump to overheat.

7. Performance Testing:

Regularly test the pump’s performance to ensure it meets the required vacuum level and flow rate. Adjust or recalibrate as necessary to maintain consistent performance.

8. Safety Checks:

Perform safety checks to ensure that all safety features and mechanisms are in working order. This is particularly important in medical and laboratory settings where the safe operation of the pump is critical.

9. Vibration Analysis:

Monitor vibration levels in the pump. Excessive vibration can indicate misalignment or worn components. Address vibration issues to prevent further damage.

10. Maintenance Logs:

Keep detailed maintenance records, including dates of inspections, repairs, and replacements. This helps track the pump’s maintenance history and plan future maintenance tasks.

11. Professional Service:

For more complex maintenance tasks or repairs, consider having the pump serviced by a professional technician or the manufacturer’s service center. They can perform in-depth diagnostics and repairs as needed.

It’s important to follow the manufacturer’s maintenance guidelines and recommendations specific to your vacuum pump model. Proper maintenance not only prolongs the pump’s life but also ensures it operates efficiently and safely, reducing the risk of unexpected failures.

small vacuum pump

What industries commonly rely on small vacuum pumps for their operations?

Small vacuum pumps play a crucial role in various industries, offering versatile solutions for a wide range of applications. Here are industries that commonly rely on small vacuum pumps for their operations:

1. Laboratory and Scientific Research:

Small vacuum pumps are essential in laboratories for applications such as vacuum filtration, rotary evaporation, freeze drying, and sample concentration. Scientific research in fields like chemistry, biology, and physics often relies on precise vacuum control.

2. Healthcare and Medical:

In the medical and healthcare industry, small vacuum pumps are used in devices like medical aspirators, wound care systems, and diagnostic equipment. They help create the necessary vacuum for procedures such as suctioning, wound drainage, and blood collection.

3. Manufacturing and Industrial Processes:

Manufacturing industries utilize small vacuum pumps in various processes, including vacuum packaging, degassing of liquids and resins, and handling of materials. Industries such as food processing, electronics, and plastics rely on vacuum technology for efficient production.

4. HVAC and Refrigeration:

In heating, ventilation, air conditioning (HVAC), and refrigeration systems, small vacuum pumps are used for evacuating and degassing refrigerant lines. This ensures optimal system performance and prevents issues like moisture contamination.

5. Automotive and Aerospace:

The automotive and aerospace industries use small vacuum pumps in applications like power brake boosters, emission control systems, and aircraft de-icing systems. These pumps play a crucial role in ensuring safety and performance in transportation equipment.

6. Environmental Monitoring and Analysis:

Environmental monitoring equipment, including air and water quality analyzers, often relies on small vacuum pumps for sample collection and analysis. They help ensure accurate data in environmental studies and compliance monitoring.

7. Semiconductor and Electronics:

In semiconductor manufacturing and electronics assembly, small vacuum pumps are used in vacuum pick-and-place systems, surface mount technology (SMT) equipment, and wafer handling. They contribute to precision and reliability in microelectronics production.

8. Research and Development:

Research and development efforts in various industries, including materials science, nanotechnology, and aerospace, rely on small vacuum pumps for experiments and prototyping. Vacuum chambers are commonly used in R&D to simulate specific environmental conditions.

9. Pharmaceuticals and Biotechnology:

The pharmaceutical and biotechnology industries use small vacuum pumps for processes such as filtration, lyophilization (freeze drying), and drug formulation. These pumps are critical for drug manufacturing and research.

10. Food and Beverage:

In the food and beverage industry, small vacuum pumps are used in vacuum packaging machines to extend the shelf life of perishable products. They help remove air from packaging, preventing spoilage and preserving freshness.

11. Energy and Power Generation:

Small vacuum pumps are used in power plants and energy facilities for applications like turbine sealing and transformer evacuation. They contribute to the efficiency and reliability of power generation systems.

These industries rely on small vacuum pumps to perform critical functions, enhance product quality, and optimize various processes. The versatility and efficiency of small vacuum pumps make them indispensable tools in modern industrial and scientific applications.

China Professional Mini Vacuum Suction Circulation Small Diaphragm Electric Air Pump   wholesaler China Professional Mini Vacuum Suction Circulation Small Diaphragm Electric Air Pump   wholesaler
editor by CX 2024-04-09

China best Laboratory Oil Free Oilless Small Diaphragm Mini Electric Vacuum Air Pump Price vacuum pump oil

Product Description

Laboratory Oil Free Oilless Small Diaphragm Mini Electric Vacuum Air Pump

 

P20 vacuum diaphragm pump is a gas-based two-stage pump, all parts in contact with the gas are PTFE material, high corrosion resistance, wide application, it can completely replace the water circulation pump, suitable for Chemical, pharmaceutical, petrochemical and other industries on the corrosive gas treatment, such as suction filtration, vacuum distillation, rotary evaporation, vacuum concentration, centrifugal concentration, CHINAMFG phase extraction.

Feature of the mini diaphragm vacuum pump:
1. Resistant to chemical corrosion.Suitable for strong acid and alkali gas.
2. Pollution free,maintance-free,keep the laboratory clean and quiet.
3. Over-heat protection,ensure the stability and safety of the pump.
4. Small size, light weight, easy to move, save space.

Model P20
Voltage 110V 220V
Power 130W 120W
Pump head type Two-stage
Ultimate vacuum degree 8mbar
Operate pressure 1bar(Max.)
Flow 20L/min
Interface 10mm
Medium and ambient temperature 5~40ºC
Pump head PTFE
Diaphragm PTFE coated
Valves FKM or FFPM
Rotating speed 1400rpm
Humidity <80%
Dimension 315*165*210mm
Weight 9.6kg

More diaphragm vacuum pumps for your choice:

oil sealed rotary vane vacuum pump:

Circulating water vacuum pump:

Company and Service:
HangZhou CHINAMFG Machinery and Instrument Equipment Co., Ltd. is a famous manufacturer of lab equipment located in the central China.
The main product is rotary evaporator, short path distillation, glass reactor, circulating water vacuum pump,cooling chiller,drying oven and so on lab instrument device.
We have 7 years of experience in exporting lab instruments,have become a Gold Plus Supplier,the amount of transactions conducted in the past 6 months is over 510000 dollars.Our products have been sold over the world
We are professional enough to get your trust.

Pre-sale Service:
24 Hours online service for your consult.
Help choose right model,and a series of service,person,advise. 
Provide discount for many sets order
Choose payment term you convienent.
Promptly production and delivery,inform you in time.
 
After sale service:
1 year warranty service and all life maintenance.
Technical Egineer are avalible for oversea trainning.
Free change for some parts
Remote control technical consult
Free installation DVD
Maintenance plan

Packing:

  • The product will be packed in wooden case, and also can be packed by others ways as your request.
  • Both neutral and cuistomized packing are available.

Shipping:

  • We can ship the goods to you by international express,such as DHL, UPS, TNT and so on. And you can choose the appropriate way based on your timeline and budget. Besides, you can choose to use your own shipping agent.

Shipping method Note
Express Door to door, very convenient, don’t need to clearance or pick-up
By air Airport to airport, you need to do the customs clearance and pick up the goods at your local airport, which you can have a local shipping agent to do for you.
By sea Port to port and you need to do the customs clearance and pick-up the goods at your local port, which you can have a local shipping agent to do for you.

We are a professional company with 6 years of experience in exporting laboratory equipment.
We can provide you professional service and products with good quality.
Just send us an inquiry.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Oil or Not: Oil Free
Structure: Diaphragm Vacuum Pump
Exhauster Method: Positive Displacement Pump
Vacuum Degree: High Vacuum
Work Function: Mainsuction Pump
Working Conditions: Dry

vacuum pump

Can Vacuum Pumps Be Used in the Automotive Industry?

Yes, vacuum pumps are widely used in the automotive industry for various applications. Here’s a detailed explanation:

The automotive industry relies on vacuum pumps for several critical functions and systems within vehicles. Vacuum pumps play a crucial role in enhancing performance, improving fuel efficiency, and enabling the operation of various automotive systems. Here are some key applications of vacuum pumps in the automotive industry:

1. Brake Systems: Vacuum pumps are commonly used in vacuum-assisted brake systems, also known as power brakes. These systems utilize vacuum pressure to amplify the force applied by the driver to the brake pedal, making braking more efficient and responsive. Vacuum pumps help generate the required vacuum for power brake assistance, ensuring reliable and consistent braking performance.

2. Emission Control Systems: Vacuum pumps are integral components of emission control systems in vehicles. They assist in operating components such as the Exhaust Gas Recirculation (EGR) valve and the Evaporative Emission Control (EVAP) system. Vacuum pumps help create the necessary vacuum conditions for proper functioning of these systems, reducing harmful emissions and improving overall environmental performance.

3. HVAC Systems: Heating, Ventilation, and Air Conditioning (HVAC) systems in vehicles often utilize vacuum pumps for various functions. Vacuum pumps help control the vacuum-operated actuators that regulate the direction, temperature, and airflow of the HVAC system. They ensure efficient operation and precise control of the vehicle’s interior climate control system.

4. Turbocharger and Supercharger Systems: In performance-oriented vehicles, turbocharger and supercharger systems are used to increase engine power and efficiency. Vacuum pumps play a role in these systems by providing vacuum pressure for actuating wastegates, blow-off valves, and other control mechanisms. These components help regulate the boost pressure and ensure optimal performance of the forced induction system.

5. Fuel Delivery Systems: Vacuum pumps are employed in certain types of fuel delivery systems, such as mechanical fuel pumps. These pumps utilize vacuum pressure to draw fuel from the fuel tank and deliver it to the engine. While mechanical fuel pumps are less commonly used in modern vehicles, vacuum pumps are still found in some specialized applications.

6. Engine Management Systems: Vacuum pumps are utilized in engine management systems for various functions. They assist in operating components such as vacuum-operated actuators, vacuum reservoirs, and vacuum sensors. These components play a role in engine performance, emissions control, and overall system functionality.

7. Fluid Control Systems: Vacuum pumps are used in fluid control systems within vehicles, such as power steering systems. Vacuum-assisted power steering systems utilize vacuum pressure to assist the driver in steering, reducing the effort required. Vacuum pumps provide the necessary vacuum for power steering assistance, enhancing maneuverability and driver comfort.

8. Diagnostic and Testing Equipment: Vacuum pumps are also utilized in automotive diagnostic and testing equipment. These pumps create vacuum conditions necessary for testing and diagnosing various vehicle systems, such as intake manifold leaks, brake system integrity, and vacuum-operated components.

It’s important to note that different types of vacuum pumps may be used depending on the specific automotive application. Common vacuum pump technologies in the automotive industry include diaphragm pumps, rotary vane pumps, and electric vacuum pumps.

In summary, vacuum pumps have numerous applications in the automotive industry, ranging from brake systems and emission control to HVAC systems and engine management. They contribute to improved safety, fuel efficiency, environmental performance, and overall vehicle functionality.

vacuum pump

Can Vacuum Pumps Be Used for Soil and Groundwater Remediation?

Vacuum pumps are indeed widely used for soil and groundwater remediation. Here’s a detailed explanation:

Soil and groundwater remediation refers to the process of removing contaminants from the soil and groundwater to restore environmental quality and protect human health. Vacuum pumps play a crucial role in various remediation techniques by facilitating the extraction and treatment of contaminated media. Some of the common applications of vacuum pumps in soil and groundwater remediation include:

1. Soil Vapor Extraction (SVE): Soil vapor extraction is a widely used remediation technique for volatile contaminants present in the subsurface. It involves the extraction of vapors from the soil by applying a vacuum to the subsurface through wells or trenches. Vacuum pumps create a pressure gradient that induces the movement of vapors towards the extraction points. The extracted vapors are then treated to remove or destroy the contaminants. Vacuum pumps play a vital role in SVE by maintaining the necessary negative pressure to enhance the volatilization and extraction of contaminants from the soil.

2. Dual-Phase Extraction (DPE): Dual-phase extraction is a remediation method used for the simultaneous extraction of both liquids (such as groundwater) and vapors (such as volatile organic compounds) from the subsurface. Vacuum pumps are utilized to create a vacuum in extraction wells or points, drawing out both the liquid and vapor phases. The extracted groundwater and vapors are then separated and treated accordingly. Vacuum pumps are essential in DPE systems for efficient and controlled extraction of both liquid and vapor-phase contaminants.

3. Groundwater Pumping and Treatment: Vacuum pumps are also employed in groundwater remediation through the process of pumping and treatment. They are used to extract contaminated groundwater from wells or recovery trenches. By creating a vacuum or negative pressure, vacuum pumps facilitate the flow of groundwater towards the extraction points. The extracted groundwater is then treated to remove or neutralize the contaminants before being discharged or re-injected into the ground. Vacuum pumps play a critical role in maintaining the required flow rates and hydraulic gradients for effective groundwater extraction and treatment.

4. Air Sparging: Air sparging is a remediation technique used to treat groundwater and soil contaminated with volatile organic compounds (VOCs). It involves the injection of air or oxygen into the subsurface to enhance the volatilization of contaminants. Vacuum pumps are utilized in air sparging systems to create a vacuum or negative pressure zone in wells or points surrounding the contaminated area. This induces the movement of air and oxygen through the soil, facilitating the release and volatilization of VOCs. Vacuum pumps are essential in air sparging by maintaining the necessary negative pressure gradient for effective contaminant removal.

5. Vacuum-Enhanced Recovery: Vacuum-enhanced recovery, also known as vacuum-enhanced extraction, is a remediation technique used to recover non-aqueous phase liquids (NAPLs) or dense non-aqueous phase liquids (DNAPLs) from the subsurface. Vacuum pumps are employed to create a vacuum or negative pressure gradient in recovery wells or trenches. This encourages the movement and extraction of NAPLs or DNAPLs towards the recovery points. Vacuum pumps facilitate the efficient recovery of these dense contaminants, which may not be easily recoverable using traditional pumping methods.

It’s important to note that different types of vacuum pumps, such as rotary vane pumps, liquid ring pumps, or air-cooled pumps, may be used in soil and groundwater remediation depending on the specific requirements of the remediation technique and the nature of the contaminants.

In summary, vacuum pumps play a vital role in various soil and groundwater remediation techniques, including soil vapor extraction, dual-phase extraction, groundwater pumping and treatment, air sparging, and vacuum-enhanced recovery. By creating and maintaining the necessary pressure differentials, vacuum pumps enable the efficient extraction, treatment, and removal of contaminants, contributing to the restoration of soil and groundwater quality.

vacuum pump

What Industries Commonly Rely on Vacuum Pump Technology?

Vacuum pump technology finds applications in various industries where creating and controlling vacuum or low-pressure environments is crucial. Here’s a detailed explanation:

1. Manufacturing and Production: Vacuum pumps are extensively used in manufacturing and production processes across multiple industries. They are employed for tasks such as vacuum molding, vacuum packaging, vacuum degassing, vacuum drying, and vacuum distillation. Industries like automotive, aerospace, electronics, pharmaceuticals, and food processing rely on vacuum pump technology to achieve precise and controlled manufacturing conditions.

2. Chemical and Pharmaceutical: The chemical and pharmaceutical industries heavily rely on vacuum pumps for numerous applications. These include solvent recovery, vacuum filtration, vacuum drying, distillation, crystallization, and evaporation. Vacuum pumps enable these industries to carry out critical processes under reduced pressure, ensuring efficient separation, purification, and synthesis of various chemical compounds and pharmaceutical products.

3. Semiconductor and Electronics: The semiconductor and electronics industries extensively use vacuum pumps for manufacturing microchips, electronic components, and electronic devices. Vacuum pumps are crucial in processes such as physical vapor deposition (PVD), chemical vapor deposition (CVD), etching, ion implantation, and sputtering. These processes require controlled vacuum conditions to ensure precise deposition, surface modification, and contamination-free manufacturing.

4. Research and Development: Vacuum pump technology is integral to research and development activities across scientific disciplines. It supports experiments and investigations in fields such as physics, chemistry, materials science, biology, and environmental science. Vacuum pumps facilitate processes like freeze drying, vacuum distillation, vacuum evaporation, vacuum spectroscopy, and creating controlled atmospheric conditions for studying various phenomena.

5. Food and Beverage: The food and beverage industry relies on vacuum pumps for packaging and preservation purposes. Vacuum sealing is used to extend the shelf life of food products by removing air and creating a vacuum-sealed environment that inhibits spoilage and maintains freshness. Vacuum pumps are also used in processes like freeze drying, vacuum concentration, and vacuum cooling.

6. Oil and Gas: In the oil and gas industry, vacuum pumps play a role in various applications. They are used for crude oil vacuum distillation, vacuum drying, vapor recovery, gas compression, and gas stripping processes. Vacuum pumps help maintain optimal conditions during oil refining, gas processing, and petrochemical manufacturing.

7. Environmental and Waste Management: Vacuum pumps are employed in environmental and waste management applications. They are used for tasks such as soil vapor extraction, groundwater remediation, landfill gas recovery, and wastewater treatment. Vacuum pumps facilitate the removal and containment of gases, vapors, and pollutants, contributing to environmental protection and sustainable waste management.

8. Medical and Healthcare: The medical and healthcare sectors utilize vacuum pumps for various purposes. They are used in medical equipment such as vacuum-assisted wound therapy devices, vacuum-based laboratory analyzers, and vacuum suction systems in hospitals and clinics. Vacuum pumps are also used in medical research, pharmaceutical production, and medical device manufacturing.

9. Power Generation: Vacuum pumps play a role in power generation industries, including nuclear power plants and thermal power plants. They are used for steam condensation, turbine blade cooling, vacuum drying during transformer manufacturing, and vacuum systems for testing and maintenance of power plant equipment.

10. HVAC and Refrigeration: The HVAC (Heating, Ventilation, and Air Conditioning) and refrigeration industries rely on vacuum pumps for system installation, maintenance, and repair. Vacuum pumps are used to evacuate air and moisture from refrigerant lines and HVAC systems, ensuring optimal system performance and efficiency.

These are just a few examples of industries that commonly rely on vacuum pump technology. The versatility and wide-ranging applications of vacuum pumps make them indispensable tools across numerous sectors, enabling precise control over vacuum conditions, efficient manufacturing processes, and scientific investigations.

China best Laboratory Oil Free Oilless Small Diaphragm Mini Electric Vacuum Air Pump Price   vacuum pump oil	China best Laboratory Oil Free Oilless Small Diaphragm Mini Electric Vacuum Air Pump Price   vacuum pump oil
editor by CX 2024-04-09

China manufacturer Lab Small Oilless Diaphragm Vacuum Pump vacuum pump electric

Product Description

Product Parameters

Model GM-0.33A GM-0.5A GM-0.5B GM-1.0A GM-2 GM-0.5F
Pumping Speed(L/Min) 20 30 30 60 120 30
Ultimate Pressure Vacuum ≥0.08Mpa,200mbar ≥0.08Mpa,200mbar;positive pressure:≥30Psi ≥0.095Mpa,50mbar ≥0.08Mpa,200mbar;positive pressure:≥30Psi ≥0.08Mpa,200mbar ≥0.099Mpa,10mbar
Power(W) 160 160 160 160 300 160
Air Inlet(mm) φ6 φ6 φ6 φ6 φ9 φ6
Air Outlet(mm) Built-in silencing cotton φ6 Silencer φ6 φ9 φ6
Pump Head Quantity 1 1 2 2 2 2
Size(L*W*Hmm) 270*130*210 230*180*265 350*130*220 310*200*210 390*150*250 370*144*275
Working Temperature(ºC) 7-40 7-40 7-40 7-40 7-40 7-40
Pump Temperature(ºC) <55 <55 <55 <55 <55 <55
Weight(kg) 7 7.5 10 10 20 13.5
Diaphragm NBR NBR NBR NBR NBR NBR
Valves NBR NBR NBR NBR NBR NBR
Noise Level (DB) <60 <60 <60 <60 <60 <60
Power Supply 220V,50HZ 220V,50HZ 220V,50HZ 220V,50HZ 220V,50HZ 220V,50HZ

Product Description

“BOTH” GM Series New Diaphragm Vacuum Pump , the parts which contact with the gas are PTFE material , it’s suitable for the corrosive chemical , pharmaceutical , petrochemical gases etc . It’s used for vacuum filtration , reduced pressure distillation , rotary evaporation , vacuum concentration , centrifugal concentration , CHINAMFG phase extraction etc . It’s a very high cost performance product with quality reliability , unique structural design to meet the various needs of the laboratory.

Application
Vacuum Adsorption | Solvent Filtration | Vacuum Distillation | Vacuum Drying | Compressing and Converting Gas |SPE(Solid Phase Extraction) | Deaeration

Company Profile

Packaging & Shipping

FAQ

Q1. What is your products range?
• Industry water chiller, recirculating cooling chiller, rotary evaporator, alcohol recovery equipment, short path distillation kit, glass molecular distillation equipment, falling film evaporator, jacketed glass reactor and other lab equipment.

Q2. Are you trading company or manufacturer?
• We are professional manufacture of lab equipment and we have our own factory.

Q3. Do you provide samples? Is it free?

• Yes, we could offer the sample. Considering the high value of our products, the sample is not free, but we will give you our best price including shipping cost.

Q4. Do you have warranty?
• Yes, we offer 1 year warranty for the spare part.

Q5. How long is your delivery time?
• Generally it is within 7 working days after receiving the payment if the goods are in stock. Or it is 15 working days if thegoods are not in stock, depending on order quantity.

Q6. What is your terms of payment?
• Payment≤15,000USD, 100% in advance. Payment≥15,000USD, 70% T/T in advance, balance before shipment.
(If you are concerned about payment security for the first order, we advise you can place Trade Assurance Order via Alibaba. you will get 100% payment refund if we can’t meet agreed delivery time.)

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Service Support
Warranty: 1 Year
Oil or Not: Oil Free
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

small vacuum pump

Can small vacuum pumps be used in medical or laboratory equipment?

Yes, small vacuum pumps are commonly used in both medical and laboratory equipment due to their versatility, precision, and reliability. They play a crucial role in various applications within these fields. Here’s an overview of how small vacuum pumps are utilized in medical and laboratory equipment:

1. Laboratory Equipment:

Small vacuum pumps find extensive use in laboratory equipment for a wide range of tasks, including:

  • Vacuum Filtration: They facilitate the separation of solids from liquids through filtration membranes, used in sample preparation and analysis.
  • Rotary Evaporation: Small vacuum pumps are integral to rotary evaporators, which are employed for gentle evaporation of solvents from samples, typically in chemistry labs.
  • Lyophilization (Freeze Drying): Freeze-drying equipment relies on vacuum pumps to remove moisture from delicate samples without exposing them to high temperatures.
  • Sample Concentration: Vacuum concentrators are used to concentrate and desiccate samples, such as DNA or protein solutions, by evaporating solvents under vacuum.
  • Gas Chromatography (GC): Vacuum pumps are used to maintain the vacuum in GC systems, ensuring precise separation and analysis of gas components.

2. Medical Equipment:

In the medical field, small vacuum pumps are incorporated into various equipment and devices for critical functions, including:

  • Medical Aspirators: They are used to remove fluids or debris from the body during surgical procedures or in emergency situations. Vacuum pumps create the necessary suction for aspiration.
  • Wound Care Systems: Vacuum-assisted closure (VAC) systems help accelerate wound healing by applying controlled negative pressure to wounds, promoting tissue regeneration.
  • Blood Collection Devices: Vacuum pumps are essential components in blood collection systems, ensuring precise and hygienic blood sample collection from patients.
  • Anesthesia Machines: These machines use vacuum pumps to control and monitor the flow of gases, including the administration of anesthesia during surgery.
  • Dental Suction Units: In dental practices, vacuum pumps power suction units for removing saliva and debris during dental procedures.

3. Diagnostic Equipment:

Diagnostic instruments in both medical and laboratory settings often rely on small vacuum pumps for various functions, such as sample handling, filtration, and fluid movement. These pumps contribute to the accuracy and efficiency of diagnostic processes.

4. Environmental and Analytical Instruments:

Small vacuum pumps are used in environmental monitoring instruments, such as air and water quality analyzers, to collect and transport samples for analysis. They ensure precise measurements and data accuracy.

The choice of vacuum pump in medical and laboratory equipment depends on factors like the required vacuum level, flow rate, and compatibility with the materials or substances being handled. Small vacuum pumps are favored for their compact size, low noise levels, and reliability, making them well-suited for integration into sensitive and precision-oriented equipment.

Overall, small vacuum pumps are indispensable components in medical and laboratory equipment, contributing to the success of various critical applications in these fields.

small vacuum pump

What factors should one consider when choosing a small vacuum pump for a specific task?

Choosing the right small vacuum pump for a specific task is essential to ensure optimal performance and efficiency. Several factors should be taken into account when making your selection:

1. Vacuum Level Requirements:

Determine the required vacuum level for your application. Some tasks may require a high vacuum level, while others can be accomplished with a lower vacuum. The pump’s ultimate vacuum capability should match your needs.

2. Flow Rate:

Consider the volume of gas or air that needs to be evacuated or processed per unit of time. Choose a pump with an adequate flow rate to meet your application’s requirements. Insufficient flow can lead to slow or inefficient processes.

3. Type of Gas:

Identify the type of gas or vapor you will be handling. Some gases may be corrosive, reactive, or incompatible with certain pump materials. Ensure that the pump you select is compatible with the gases involved in your task.

4. Contamination Sensitivity:

If your application demands a clean and contamination-free vacuum environment, consider pumps that operate without oil lubrication, such as diaphragm or scroll pumps. These pumps are suitable for applications like analytical instruments and cleanroom environments.

5. Power Source:

Determine the available power source for your pump. Small vacuum pumps can be electric, battery-powered, pneumatic, or even hand-operated. Choose a power source that aligns with your application’s requirements and availability.

6. Portability:

If mobility is essential, opt for a compact and lightweight vacuum pump. Battery-powered or pneumatic pumps are often chosen for portable applications. Consider the size and weight of the pump relative to the device or equipment it will be integrated into.

7. Noise Level:

Assess the noise level generated by the pump. Some small vacuum pumps operate quietly, which is advantageous in noise-sensitive environments like laboratories and medical facilities. Low-noise pumps are also suitable for handheld devices.

8. Maintenance Requirements:

Consider the maintenance needs of the pump. Some pumps have simpler designs and require less frequent servicing. Evaluate factors such as filter replacement, lubrication, and ease of access for maintenance tasks.

9. Cost and Budget:

Take into account your budget constraints. Small vacuum pumps come in a range of price points, so choose one that offers the best balance between performance and cost while meeting your specific requirements.

10. Environmental Considerations:

Consider environmental factors, especially if your application is in a sensitive or regulated area. Assess energy efficiency, emissions, and any environmental certifications or standards that the pump may need to meet.

11. Application Specifics:

Finally, closely examine the unique requirements of your specific task. Each application may have its own considerations, so tailor your choice to suit the precise demands of your project or process.

By carefully evaluating these factors, you can select the most appropriate small vacuum pump for your specific task, ensuring that it performs efficiently and effectively.

small vacuum pump

Are small vacuum pumps suitable for portable or handheld devices?

Small vacuum pumps are indeed suitable for integration into portable or handheld devices across various industries. Their compact size, lightweight design, and energy efficiency make them valuable components for creating portable systems that require vacuum or pressure control. Here’s why small vacuum pumps are well-suited for such applications:

1. Compact Size:

Small vacuum pumps are specifically designed to be compact, allowing for easy integration into portable or handheld devices without significantly increasing the overall size or weight of the system. This is advantageous for applications where portability is a priority.

2. Lightweight Design:

The lightweight construction of small vacuum pumps makes them ideal for portable devices that may need to be carried or operated by hand. This is particularly important in fields like healthcare, where handheld medical devices require precise vacuum control.

3. Low Power Consumption:

Many small vacuum pumps are energy-efficient, consuming minimal power while still delivering reliable performance. This is crucial for battery-powered or portable devices, as it helps extend the device’s operational life between charges or battery replacements.

4. Oil-Free Operation:

Several small vacuum pump types, such as diaphragm pumps, operate without the need for oil lubrication. Oil-free operation eliminates the risk of oil contamination in the device, making them suitable for sensitive applications like analytical instruments and cleanroom equipment.

5. Quiet Operation:

Some small vacuum pumps, like diaphragm and scroll pumps, operate quietly. This is beneficial in devices used in noise-sensitive environments, such as medical settings or research laboratories.

6. Versatility:

Small vacuum pumps are versatile and can be customized to meet specific application requirements. They can be integrated into a wide range of handheld devices, including vacuum aspiration systems, sample concentrators, and point-of-care diagnostic devices.

7. Precision Control:

Small vacuum pumps offer precise control over vacuum levels, making them suitable for applications where accuracy is critical, such as in medical suction devices, where the vacuum level must be carefully controlled to avoid tissue damage.

8. Integration Flexibility:

Manufacturers can easily integrate small vacuum pumps into the design of portable devices, ensuring a seamless and efficient solution for end-users. This integration flexibility allows for the creation of compact and user-friendly devices.

In summary, small vacuum pumps are well-suited for use in portable or handheld devices due to their compact size, low power consumption, versatility, and precise control capabilities. Their integration into such devices enhances their functionality and enables innovative solutions in fields such as healthcare, environmental monitoring, and point-of-care diagnostics.

China manufacturer Lab Small Oilless Diaphragm Vacuum Pump   vacuum pump electricChina manufacturer Lab Small Oilless Diaphragm Vacuum Pump   vacuum pump electric
editor by CX 2024-04-04

China wholesaler Mini Small Electric Premium High Air Vacuum Pump vacuum pump diy

Product Description

Product Description

SHZ-D(III) table type anti-corrosion circulating water vacuum pump is on basis of multiple purpose circulating water vacuum pump, considered from the small laboratory area, referred to Japanese table model pump, and make improvements of one-time molding shell and reduced volume. SHZ-D(III) table type anti-corrosion circulating water vacuum pump has features of small volume, light weight, beautiful appearance, double-meter and double-end air exhausting, four-meter and four-end, it’s a multiple purpose vacuum pump whose both sides are the same, which is not only convenient for teacher to demonstrate, but also for students to turn on/off from any side.

SHZ-D(III) table type anti-corrosion circulating water vacuum pump’s engine body has double tapping, can be single used or parallel used with 2 vacuum meter. Main engine is made from stainless steel movement and anti-corrosion movement. It embraces advantages of anti-corrosion, no pollution, low noise and convenient to move, can also add vacuum control valve according to client needs. SHZ-D(III) table type anti-corrosion circulating water vacuum pump enables 4 students to conduct chemical experiments at the same time, and shrank experiment space.

Product Parameters

Product Model SHZ-DIII
Power 370W
Power Supply 220V
Flow 40L/MIN
Head 12M
Pump Head Material Corrosion resistant
Pump Head 4 pieces
Sucking Rate 10L/MIN
Vacuum Degree 0.098MPA
Volume 15L
Dimension 520mm*440mm*350mm

 

Product Details

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Year
Warranty: 1 Year
Structure: Rotary Vacuum Pump
Vacuum Degree: 0.098MPa
Power: 370W
Power Supply: 220V
Samples:
US$ 225/Piece
1 Piece(Min.Order)

|

small vacuum pump

What are the cost considerations when purchasing or installing small vacuum pumps?

When purchasing and installing small vacuum pumps, there are several cost considerations to keep in mind. These costs can vary based on factors such as the type of pump, application, and installation requirements. Here are key cost considerations:

1. Initial Purchase Cost:

The initial purchase cost of the vacuum pump is a significant factor. Different types of small vacuum pumps come with varying price tags. For example, diaphragm and rotary vane pumps are generally more affordable than high-end scroll pumps or specialized pumps for specific applications.

2. Pump Type:

The type of vacuum pump you choose will impact the cost. Oil-free pumps may be more expensive upfront but can reduce long-term maintenance and oil-related costs.

3. Application Requirements:

The specific requirements of your application can affect costs. For instance, if your application demands a high vacuum level or precise control, you may need a more advanced and costly pump.

4. Maintenance Costs:

Consider the long-term maintenance costs of the pump. Oil-lubricated pumps require regular oil changes and maintenance, which can add to the overall cost of ownership. Oil-free pumps generally have lower maintenance costs.

5. Installation Expenses:

Installation costs may include labor, materials, and any necessary modifications to your equipment or facility. Some pumps may require specialized installation, especially in industrial or laboratory settings.

6. Operating Costs:

Factor in the ongoing operating costs, such as electricity consumption. Energy-efficient pumps may have lower operational expenses over time.

7. Warranty and Service:

Check the manufacturer’s warranty and the availability of service and spare parts. A longer warranty can provide cost savings by reducing repair expenses.

8. Life Cycle Costs:

Consider the total cost of ownership over the pump’s expected lifespan. A higher upfront cost may be justified if it results in lower overall operating and maintenance costs.

9. Energy Efficiency:

Energy-efficient pumps may have a higher initial cost but can lead to significant savings in energy bills over time.

10. Regulatory Compliance:

Some industries or applications may require compliance with specific regulations or safety standards, which could add costs related to compliance testing and certification.

11. Customization:

If your application requires customized features or configurations, be prepared for potential customization costs.

12. Spare Parts and Accessories:

Consider the availability and cost of spare parts and accessories, as well as any additional components you may need for your specific application.

It’s essential to perform a thorough cost analysis that takes into account both the initial purchase cost and the long-term operating and maintenance expenses. This analysis will help you make an informed decision when selecting a small vacuum pump that aligns with your budget and application requirements.

Additionally, consult with manufacturers or suppliers to obtain detailed cost estimates and explore any available financing options or discounts that may apply to your purchase.

small vacuum pump

Can you describe the typical power sources for small vacuum pumps?

Small vacuum pumps can be powered by various sources, depending on their design, size, and intended applications. Here are the typical power sources for small vacuum pumps:

1. Electric Power:

Most small vacuum pumps are electrically powered and use standard alternating current (AC) or direct current (DC) sources. Electric vacuum pumps are versatile and widely used in laboratory equipment, industrial processes, and portable devices. They can be plugged into wall outlets or connected to DC power sources such as batteries or power supplies.

2. Battery Power:

Portable and handheld devices often incorporate battery-powered small vacuum pumps. These pumps are ideal for applications where mobility is crucial, such as fieldwork, medical instruments, and handheld vacuum aspirators. Batteries can be rechargeable or disposable, depending on the device’s requirements.

3. Compressed Air:

In some applications, small vacuum pumps are driven by compressed air or other gases. These pumps are known as pneumatic or air-operated vacuum pumps. They are commonly used in industrial automation, vacuum gripping systems, and manufacturing processes where compressed air is readily available.

4. Hydraulic Power:

In specialized applications, small vacuum pumps can be hydraulically powered. These pumps are often used in systems where hydraulic power sources are already in use. They are less common than electric or pneumatic options but find application in specific industries like automotive manufacturing.

5. Solar Power:

In remote or off-grid locations, small vacuum pumps can be powered by solar panels and photovoltaic systems. Solar-powered vacuum pumps are environmentally friendly and energy-efficient, making them suitable for sustainable and remote applications.

6. Hand Cranks:

For ultra-portable and emergency situations, some small vacuum pumps can be hand-operated using a manual hand crank. These pumps are typically compact and lightweight, making them suitable for backup or low-volume vacuum needs.

7. Engine-Driven:

In certain industrial and automotive applications, small vacuum pumps can be driven by an internal combustion engine. These pumps are commonly used in power brake boosters and emission control systems in vehicles.

The choice of power source for a small vacuum pump depends on factors such as the application’s mobility requirements, availability of power sources, energy efficiency goals, and environmental considerations. Manufacturers design vacuum pumps to be compatible with various power sources to meet diverse application needs.

small vacuum pump

What industries commonly rely on small vacuum pumps for their operations?

Small vacuum pumps play a crucial role in various industries, offering versatile solutions for a wide range of applications. Here are industries that commonly rely on small vacuum pumps for their operations:

1. Laboratory and Scientific Research:

Small vacuum pumps are essential in laboratories for applications such as vacuum filtration, rotary evaporation, freeze drying, and sample concentration. Scientific research in fields like chemistry, biology, and physics often relies on precise vacuum control.

2. Healthcare and Medical:

In the medical and healthcare industry, small vacuum pumps are used in devices like medical aspirators, wound care systems, and diagnostic equipment. They help create the necessary vacuum for procedures such as suctioning, wound drainage, and blood collection.

3. Manufacturing and Industrial Processes:

Manufacturing industries utilize small vacuum pumps in various processes, including vacuum packaging, degassing of liquids and resins, and handling of materials. Industries such as food processing, electronics, and plastics rely on vacuum technology for efficient production.

4. HVAC and Refrigeration:

In heating, ventilation, air conditioning (HVAC), and refrigeration systems, small vacuum pumps are used for evacuating and degassing refrigerant lines. This ensures optimal system performance and prevents issues like moisture contamination.

5. Automotive and Aerospace:

The automotive and aerospace industries use small vacuum pumps in applications like power brake boosters, emission control systems, and aircraft de-icing systems. These pumps play a crucial role in ensuring safety and performance in transportation equipment.

6. Environmental Monitoring and Analysis:

Environmental monitoring equipment, including air and water quality analyzers, often relies on small vacuum pumps for sample collection and analysis. They help ensure accurate data in environmental studies and compliance monitoring.

7. Semiconductor and Electronics:

In semiconductor manufacturing and electronics assembly, small vacuum pumps are used in vacuum pick-and-place systems, surface mount technology (SMT) equipment, and wafer handling. They contribute to precision and reliability in microelectronics production.

8. Research and Development:

Research and development efforts in various industries, including materials science, nanotechnology, and aerospace, rely on small vacuum pumps for experiments and prototyping. Vacuum chambers are commonly used in R&D to simulate specific environmental conditions.

9. Pharmaceuticals and Biotechnology:

The pharmaceutical and biotechnology industries use small vacuum pumps for processes such as filtration, lyophilization (freeze drying), and drug formulation. These pumps are critical for drug manufacturing and research.

10. Food and Beverage:

In the food and beverage industry, small vacuum pumps are used in vacuum packaging machines to extend the shelf life of perishable products. They help remove air from packaging, preventing spoilage and preserving freshness.

11. Energy and Power Generation:

Small vacuum pumps are used in power plants and energy facilities for applications like turbine sealing and transformer evacuation. They contribute to the efficiency and reliability of power generation systems.

These industries rely on small vacuum pumps to perform critical functions, enhance product quality, and optimize various processes. The versatility and efficiency of small vacuum pumps make them indispensable tools in modern industrial and scientific applications.

China wholesaler Mini Small Electric Premium High Air Vacuum Pump   vacuum pump diyChina wholesaler Mini Small Electric Premium High Air Vacuum Pump   vacuum pump diy
editor by CX 2024-04-04

China Hot selling Small Electric Diesel Concrete Pump Hydraulic Concrete Pouring Pump vacuum pump for ac

Product Description

Small Electric Diesel Concrete Pump Hydraulic Concrete Pouring Pump

Product Description

Concrete pump, also known as concrete pump, consists of a pump body and a conveying pipe.
It is a kind of machinery that uses pressure to continuously transport concrete along pipes.
It is mainly used in house construction, bridges and tunnel construction. At present, it is mainly divided into gate valve concrete pump and S valve concrete pump.
Another is to install the pump body on the chassis of the car, and then equip the pump with a telescopic or inflected cloth boom.

 Technical parameters of trailer mounted concrete pump
Model HBT601390ES HBT6016110ES HBT801390ES
Maximum through(m³/h) 67/43 65/41 80/53
Delivery Pressure(Mpa) 13/7 16/11 13/7
Delivery Distance V/H(m) 280/1200 350/1500 280/1200
Distribution Value S-Tube valve
Conveyor cylinder(mm) Ф200*1600 Ф200*1600 Ф200*1800
Hopper volume(m³) 0.8
Rated power(kw) 90 110 90
Rated engine speed(r/min) 1480
Hydraulic tank capacity(L) 500
Weight(kg) 5800 6000 6000
Dimensions(mm) 6000*2100*2250

 

Technical parameters of trailer mounted concrete pump
Model HBT8013110ES HBT8018132ES HBT8016110ES
Maximum through(m³/h) 86/60 83/56 80/60
Delivery Pressure(Mpa) 13 7 18 11 16 11
Delivery Distance V/H(m) 310/1400 370/1800 350/1500
Distribution Value S-Tube valve
Conveyor cylinder(mm) Ф200*1800
Hopper volume(m³) 0.8 0.8 0.7
Rated power(kw) 110 132 110
Rated engine speed(r/min) 1480
Hydraulic tank capacity(L) 500
Weight(kg) 6000 6500 6200
Dimensions(mm) 6300*2100*2250

 

Company Profile

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: Concrete Pump
Shotcrete Type: Wet
Machining Process: Vacuum
Structure: Cylinder Type
Certification: ISO9001: 2000, CE
Condition: New
Samples:
US$ 6820/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

small vacuum pump

What are the cost considerations when purchasing or installing small vacuum pumps?

When purchasing and installing small vacuum pumps, there are several cost considerations to keep in mind. These costs can vary based on factors such as the type of pump, application, and installation requirements. Here are key cost considerations:

1. Initial Purchase Cost:

The initial purchase cost of the vacuum pump is a significant factor. Different types of small vacuum pumps come with varying price tags. For example, diaphragm and rotary vane pumps are generally more affordable than high-end scroll pumps or specialized pumps for specific applications.

2. Pump Type:

The type of vacuum pump you choose will impact the cost. Oil-free pumps may be more expensive upfront but can reduce long-term maintenance and oil-related costs.

3. Application Requirements:

The specific requirements of your application can affect costs. For instance, if your application demands a high vacuum level or precise control, you may need a more advanced and costly pump.

4. Maintenance Costs:

Consider the long-term maintenance costs of the pump. Oil-lubricated pumps require regular oil changes and maintenance, which can add to the overall cost of ownership. Oil-free pumps generally have lower maintenance costs.

5. Installation Expenses:

Installation costs may include labor, materials, and any necessary modifications to your equipment or facility. Some pumps may require specialized installation, especially in industrial or laboratory settings.

6. Operating Costs:

Factor in the ongoing operating costs, such as electricity consumption. Energy-efficient pumps may have lower operational expenses over time.

7. Warranty and Service:

Check the manufacturer’s warranty and the availability of service and spare parts. A longer warranty can provide cost savings by reducing repair expenses.

8. Life Cycle Costs:

Consider the total cost of ownership over the pump’s expected lifespan. A higher upfront cost may be justified if it results in lower overall operating and maintenance costs.

9. Energy Efficiency:

Energy-efficient pumps may have a higher initial cost but can lead to significant savings in energy bills over time.

10. Regulatory Compliance:

Some industries or applications may require compliance with specific regulations or safety standards, which could add costs related to compliance testing and certification.

11. Customization:

If your application requires customized features or configurations, be prepared for potential customization costs.

12. Spare Parts and Accessories:

Consider the availability and cost of spare parts and accessories, as well as any additional components you may need for your specific application.

It’s essential to perform a thorough cost analysis that takes into account both the initial purchase cost and the long-term operating and maintenance expenses. This analysis will help you make an informed decision when selecting a small vacuum pump that aligns with your budget and application requirements.

Additionally, consult with manufacturers or suppliers to obtain detailed cost estimates and explore any available financing options or discounts that may apply to your purchase.

small vacuum pump

Can you describe the typical power sources for small vacuum pumps?

Small vacuum pumps can be powered by various sources, depending on their design, size, and intended applications. Here are the typical power sources for small vacuum pumps:

1. Electric Power:

Most small vacuum pumps are electrically powered and use standard alternating current (AC) or direct current (DC) sources. Electric vacuum pumps are versatile and widely used in laboratory equipment, industrial processes, and portable devices. They can be plugged into wall outlets or connected to DC power sources such as batteries or power supplies.

2. Battery Power:

Portable and handheld devices often incorporate battery-powered small vacuum pumps. These pumps are ideal for applications where mobility is crucial, such as fieldwork, medical instruments, and handheld vacuum aspirators. Batteries can be rechargeable or disposable, depending on the device’s requirements.

3. Compressed Air:

In some applications, small vacuum pumps are driven by compressed air or other gases. These pumps are known as pneumatic or air-operated vacuum pumps. They are commonly used in industrial automation, vacuum gripping systems, and manufacturing processes where compressed air is readily available.

4. Hydraulic Power:

In specialized applications, small vacuum pumps can be hydraulically powered. These pumps are often used in systems where hydraulic power sources are already in use. They are less common than electric or pneumatic options but find application in specific industries like automotive manufacturing.

5. Solar Power:

In remote or off-grid locations, small vacuum pumps can be powered by solar panels and photovoltaic systems. Solar-powered vacuum pumps are environmentally friendly and energy-efficient, making them suitable for sustainable and remote applications.

6. Hand Cranks:

For ultra-portable and emergency situations, some small vacuum pumps can be hand-operated using a manual hand crank. These pumps are typically compact and lightweight, making them suitable for backup or low-volume vacuum needs.

7. Engine-Driven:

In certain industrial and automotive applications, small vacuum pumps can be driven by an internal combustion engine. These pumps are commonly used in power brake boosters and emission control systems in vehicles.

The choice of power source for a small vacuum pump depends on factors such as the application’s mobility requirements, availability of power sources, energy efficiency goals, and environmental considerations. Manufacturers design vacuum pumps to be compatible with various power sources to meet diverse application needs.

small vacuum pump

What industries commonly rely on small vacuum pumps for their operations?

Small vacuum pumps play a crucial role in various industries, offering versatile solutions for a wide range of applications. Here are industries that commonly rely on small vacuum pumps for their operations:

1. Laboratory and Scientific Research:

Small vacuum pumps are essential in laboratories for applications such as vacuum filtration, rotary evaporation, freeze drying, and sample concentration. Scientific research in fields like chemistry, biology, and physics often relies on precise vacuum control.

2. Healthcare and Medical:

In the medical and healthcare industry, small vacuum pumps are used in devices like medical aspirators, wound care systems, and diagnostic equipment. They help create the necessary vacuum for procedures such as suctioning, wound drainage, and blood collection.

3. Manufacturing and Industrial Processes:

Manufacturing industries utilize small vacuum pumps in various processes, including vacuum packaging, degassing of liquids and resins, and handling of materials. Industries such as food processing, electronics, and plastics rely on vacuum technology for efficient production.

4. HVAC and Refrigeration:

In heating, ventilation, air conditioning (HVAC), and refrigeration systems, small vacuum pumps are used for evacuating and degassing refrigerant lines. This ensures optimal system performance and prevents issues like moisture contamination.

5. Automotive and Aerospace:

The automotive and aerospace industries use small vacuum pumps in applications like power brake boosters, emission control systems, and aircraft de-icing systems. These pumps play a crucial role in ensuring safety and performance in transportation equipment.

6. Environmental Monitoring and Analysis:

Environmental monitoring equipment, including air and water quality analyzers, often relies on small vacuum pumps for sample collection and analysis. They help ensure accurate data in environmental studies and compliance monitoring.

7. Semiconductor and Electronics:

In semiconductor manufacturing and electronics assembly, small vacuum pumps are used in vacuum pick-and-place systems, surface mount technology (SMT) equipment, and wafer handling. They contribute to precision and reliability in microelectronics production.

8. Research and Development:

Research and development efforts in various industries, including materials science, nanotechnology, and aerospace, rely on small vacuum pumps for experiments and prototyping. Vacuum chambers are commonly used in R&D to simulate specific environmental conditions.

9. Pharmaceuticals and Biotechnology:

The pharmaceutical and biotechnology industries use small vacuum pumps for processes such as filtration, lyophilization (freeze drying), and drug formulation. These pumps are critical for drug manufacturing and research.

10. Food and Beverage:

In the food and beverage industry, small vacuum pumps are used in vacuum packaging machines to extend the shelf life of perishable products. They help remove air from packaging, preventing spoilage and preserving freshness.

11. Energy and Power Generation:

Small vacuum pumps are used in power plants and energy facilities for applications like turbine sealing and transformer evacuation. They contribute to the efficiency and reliability of power generation systems.

These industries rely on small vacuum pumps to perform critical functions, enhance product quality, and optimize various processes. The versatility and efficiency of small vacuum pumps make them indispensable tools in modern industrial and scientific applications.

China Hot selling Small Electric Diesel Concrete Pump Hydraulic Concrete Pouring Pump   vacuum pump for ac	China Hot selling Small Electric Diesel Concrete Pump Hydraulic Concrete Pouring Pump   vacuum pump for ac
editor by CX 2024-04-03

China Professional Low Noise Electric Small Oil Free Vacuum Pump for Vacuum Filter vacuum pump connector

Product Description

Low Noise Electric Small Oil Free Vacuum Pump for Vacuum Filter
 

Features:

1. DP-01 diaphragm vacuum pump adopts oil-free lubrication design, and the compressed air is more pure. Reasonable structure, small size, light weight and low working noise.
2. The piston adopts corrosion-resistant polymer material, which has good sealing performance and chemical corrosion resistance.
3. It is suitable for a variety of instruments, and it can be used in vacuum filtration devices, vacuum filtration bottles, multi-purpose solvent filters, multi-unit filters, CHINAMFG phase extractors, vacuum drying and other experimental equipment.
Parameters:
 

Model Vacuum Pressure  Flow Power Power Supply Net Weight
DP-01 0.08Mpa 10L/Min 20W 220V/50Hz 3.5kg

Our Warehouse:

Our Service:

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: ISO9001:2000, CE
Rated Current: 1-4A
Voltage: 220V
Material: Stainless Steel
Power: Electric
Valve Body Type: Diaphragm
Customization:
Available

|

small vacuum pump

Can small vacuum pumps be used in medical or laboratory equipment?

Yes, small vacuum pumps are commonly used in both medical and laboratory equipment due to their versatility, precision, and reliability. They play a crucial role in various applications within these fields. Here’s an overview of how small vacuum pumps are utilized in medical and laboratory equipment:

1. Laboratory Equipment:

Small vacuum pumps find extensive use in laboratory equipment for a wide range of tasks, including:

  • Vacuum Filtration: They facilitate the separation of solids from liquids through filtration membranes, used in sample preparation and analysis.
  • Rotary Evaporation: Small vacuum pumps are integral to rotary evaporators, which are employed for gentle evaporation of solvents from samples, typically in chemistry labs.
  • Lyophilization (Freeze Drying): Freeze-drying equipment relies on vacuum pumps to remove moisture from delicate samples without exposing them to high temperatures.
  • Sample Concentration: Vacuum concentrators are used to concentrate and desiccate samples, such as DNA or protein solutions, by evaporating solvents under vacuum.
  • Gas Chromatography (GC): Vacuum pumps are used to maintain the vacuum in GC systems, ensuring precise separation and analysis of gas components.

2. Medical Equipment:

In the medical field, small vacuum pumps are incorporated into various equipment and devices for critical functions, including:

  • Medical Aspirators: They are used to remove fluids or debris from the body during surgical procedures or in emergency situations. Vacuum pumps create the necessary suction for aspiration.
  • Wound Care Systems: Vacuum-assisted closure (VAC) systems help accelerate wound healing by applying controlled negative pressure to wounds, promoting tissue regeneration.
  • Blood Collection Devices: Vacuum pumps are essential components in blood collection systems, ensuring precise and hygienic blood sample collection from patients.
  • Anesthesia Machines: These machines use vacuum pumps to control and monitor the flow of gases, including the administration of anesthesia during surgery.
  • Dental Suction Units: In dental practices, vacuum pumps power suction units for removing saliva and debris during dental procedures.

3. Diagnostic Equipment:

Diagnostic instruments in both medical and laboratory settings often rely on small vacuum pumps for various functions, such as sample handling, filtration, and fluid movement. These pumps contribute to the accuracy and efficiency of diagnostic processes.

4. Environmental and Analytical Instruments:

Small vacuum pumps are used in environmental monitoring instruments, such as air and water quality analyzers, to collect and transport samples for analysis. They ensure precise measurements and data accuracy.

The choice of vacuum pump in medical and laboratory equipment depends on factors like the required vacuum level, flow rate, and compatibility with the materials or substances being handled. Small vacuum pumps are favored for their compact size, low noise levels, and reliability, making them well-suited for integration into sensitive and precision-oriented equipment.

Overall, small vacuum pumps are indispensable components in medical and laboratory equipment, contributing to the success of various critical applications in these fields.

small vacuum pump

Can you describe the typical power sources for small vacuum pumps?

Small vacuum pumps can be powered by various sources, depending on their design, size, and intended applications. Here are the typical power sources for small vacuum pumps:

1. Electric Power:

Most small vacuum pumps are electrically powered and use standard alternating current (AC) or direct current (DC) sources. Electric vacuum pumps are versatile and widely used in laboratory equipment, industrial processes, and portable devices. They can be plugged into wall outlets or connected to DC power sources such as batteries or power supplies.

2. Battery Power:

Portable and handheld devices often incorporate battery-powered small vacuum pumps. These pumps are ideal for applications where mobility is crucial, such as fieldwork, medical instruments, and handheld vacuum aspirators. Batteries can be rechargeable or disposable, depending on the device’s requirements.

3. Compressed Air:

In some applications, small vacuum pumps are driven by compressed air or other gases. These pumps are known as pneumatic or air-operated vacuum pumps. They are commonly used in industrial automation, vacuum gripping systems, and manufacturing processes where compressed air is readily available.

4. Hydraulic Power:

In specialized applications, small vacuum pumps can be hydraulically powered. These pumps are often used in systems where hydraulic power sources are already in use. They are less common than electric or pneumatic options but find application in specific industries like automotive manufacturing.

5. Solar Power:

In remote or off-grid locations, small vacuum pumps can be powered by solar panels and photovoltaic systems. Solar-powered vacuum pumps are environmentally friendly and energy-efficient, making them suitable for sustainable and remote applications.

6. Hand Cranks:

For ultra-portable and emergency situations, some small vacuum pumps can be hand-operated using a manual hand crank. These pumps are typically compact and lightweight, making them suitable for backup or low-volume vacuum needs.

7. Engine-Driven:

In certain industrial and automotive applications, small vacuum pumps can be driven by an internal combustion engine. These pumps are commonly used in power brake boosters and emission control systems in vehicles.

The choice of power source for a small vacuum pump depends on factors such as the application’s mobility requirements, availability of power sources, energy efficiency goals, and environmental considerations. Manufacturers design vacuum pumps to be compatible with various power sources to meet diverse application needs.

small vacuum pump

What are small vacuum pumps, and what are their primary uses?

Small vacuum pumps are compact, portable devices designed to create a vacuum or reduce air pressure within a confined space. They find application in various industries and scientific fields due to their versatility and efficiency. Here are the primary uses of small vacuum pumps:

1. Laboratory and Scientific Research:

Small vacuum pumps are essential tools in laboratories for a wide range of applications, including:

  • Vacuum Filtration: Used to separate solids from liquids by creating a vacuum to draw the liquid through a filter.
  • Rotary Evaporation: Enables gentle solvent evaporation, commonly used in chemistry and biochemistry.
  • Sample Concentration: Helps in concentrating samples for analysis.

2. Medical and Healthcare:

In medical devices and healthcare settings, small vacuum pumps are used for applications like:

  • Blood Collection: To create a vacuum in blood collection tubes, aiding in the collection and preservation of blood samples.
  • Wound Care: Some wound treatment systems utilize vacuum pumps to assist in wound healing.
  • Dental Suction: Dental chairs and equipment often include small vacuum pumps for saliva suction and other functions.

3. Manufacturing and Automation:

Small vacuum pumps play a critical role in manufacturing processes, including:

  • Electronic Component Handling: Used in pick-and-place machines to handle delicate electronic components.
  • Vacuum Sealing: Employed in packaging machinery to create airtight seals in food and pharmaceutical packaging.
  • Vacuum Grippers: To lift and manipulate objects in automated assembly lines.

4. HVAC and Refrigeration:

In heating, ventilation, air conditioning (HVAC), and refrigeration systems, small vacuum pumps are utilized for evacuating and degassing refrigerant lines to ensure efficient and reliable operation.

5. Automotive Industry:

In the automotive industry, small vacuum pumps are used in various systems, including power brakes and emission control systems.

6. Environmental Monitoring:

Small vacuum pumps are used in environmental monitoring equipment to collect air or water samples for analysis.

7. Research and Development:

Researchers and engineers use small vacuum pumps in R&D projects for tasks like material testing, surface coating, and vacuum chambers.

Small vacuum pumps come in different types, including diaphragm pumps, rotary vane pumps, and piston pumps, each suited to specific applications. Their compact size, portability, and versatility make them indispensable tools in various fields.

China Professional Low Noise Electric Small Oil Free Vacuum Pump for Vacuum Filter   vacuum pump connector	China Professional Low Noise Electric Small Oil Free Vacuum Pump for Vacuum Filter   vacuum pump connector
editor by CX 2024-04-03

China Professional Laboratory Equipment Oilless Small Diaphragm Vacuum Pump vacuum pump electric

Product Description

 

Product Description

Laboratory equipment Oilless small Diaphragm Vacuum Pump

Product Introduction:

“Nanbei” GM-0.20 diaphragm vacuum pump has features of more advanced design, higher efficiency, longer operating life. It is an all new product engaging in the new and high technology. It is mainly used in medicinal products analysis, tenuously chemical engineering, biochemical pharmacy, food examination, investigating and solving criminal case, etc. It is an ideal product used with the high-accuracy chromatogram apparatus and HPLC solvent filter, and it is the essential equipment in the laboratory.
The body of “Nanbei” GM-0.20 diaphragm vacuum pump is made of aluminum alloy through die casting. It is antiseptic, sprayed, agile and beautiful. It has the features of higher antisepsis, wider working range. It can be used in all kinds of working environments.

Detailed Photos

Product Parameters

Speed of Evacuation(L/Min) 15 Temp of the body(ºC) <55
Ultimate pressure
Vacuum
≥0.075Mpa
250mbar
Dimensions
(L x B x H)(mm)
195×98×156
Pressure ≥30 Psi Noise Level(DB) <50
Inlet (mm)
Outlet (mm)
φ6
φ6
Weight(Kg) 4
Motor Power(w) 75 Pump Head Nylon
Temperature of working environment(ºC) 7-40 Function Vacuum & Pressure

Recommend products

 

Certifications

Packaging & Shipping

Company Profile

FAQ

Q1: Why Choose CHINAMFG ?
(1).Professional manufacturer with more than 13 years experience
(2).Exported to more than 97% Countries
(3).Turnkey Solution is no problem

Q2:OEM,ODM acceptable or not?
Absolutely Yes

Q3:What’s kind of Payment terms for customer choosing?
T/T ,Western Union, Money Gram , Credit Card, Paypal , L/C …

Q4:Can we visit your factory online?
Absolutely no problem

Q5:Can online video inspection before shipment?
Absolutely no problem

Q6: what’s the MOQ ? Sample order is OK?
MOQ:1 set, sample order is no problem

Q7:What’s kind of shipment for customer choosing?
Usually ship by sea, by air, by international express .
We can also provide reasonable solutions according to your transportation requirements

Q8:How to ensure product quality and after-sales service?
We have CE, ISO quality certificate, and SGS authentication.

After-sale service:

  1. Warranty : 1 year
  2. We supply free part for quality problem in warranty
  3. Long life technical support and service

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1year
Warranty: 1year
Oil or Not: Oil Free
Structure: Rotary Vacuum Pump
Exhauster Method: Positive Displacement Pump
Vacuum Degree: Vacuum
Samples:
US$ 400/set
1 set(Min.Order)

|

Customization:
Available

|

vacuum pump

What Is the Role of Vacuum Pumps in Semiconductor Manufacturing?

Vacuum pumps play a critical role in semiconductor manufacturing processes. Here’s a detailed explanation:

Semiconductor manufacturing involves the production of integrated circuits (ICs) and other semiconductor devices used in various electronic applications. Vacuum pumps are used extensively throughout the semiconductor manufacturing process to create and maintain the required vacuum conditions for specific manufacturing steps.

Here are some key roles of vacuum pumps in semiconductor manufacturing:

1. Deposition Processes: Vacuum pumps are used in deposition processes such as physical vapor deposition (PVD) and chemical vapor deposition (CVD). These processes involve depositing thin films of materials onto semiconductor wafers to create various layers and patterns. Vacuum pumps help create a low-pressure environment necessary for precise control of the deposition process, ensuring uniform and high-quality film formation.

2. Etching and Cleaning: Vacuum pumps are utilized in etching and cleaning processes, which involve the removal of specific layers or contaminants from semiconductor wafers. Dry etching techniques, such as plasma etching and reactive ion etching, require a vacuum environment to facilitate the ionization and removal of material. Vacuum pumps aid in creating the necessary low-pressure conditions for efficient etching and cleaning processes.

3. Ion Implantation: Ion implantation is a process used to introduce impurities into specific regions of a semiconductor wafer to modify its electrical properties. Vacuum pumps are used to evacuate the ion implantation chamber, creating the required vacuum environment for accurate and controlled ion beam acceleration and implantation.

4. Wafer Handling and Transfer: Vacuum pumps are employed in wafer handling and transfer systems. These systems utilize vacuum suction to securely hold and manipulate semiconductor wafers during various manufacturing steps, such as loading and unloading from process chambers, robotic transfer between tools, and wafer alignment.

5. Load Lock Systems: Load lock systems are used to transfer semiconductor wafers between atmospheric conditions and the vacuum environment of process chambers. Vacuum pumps are integral components of load lock systems, creating and maintaining the vacuum conditions necessary for wafer transfer while minimizing contamination risks.

6. Metrology and Inspection: Vacuum pumps are utilized in metrology and inspection tools used for characterizing semiconductor devices. These tools, such as scanning electron microscopes (SEMs) and focused ion beam (FIB) systems, often operate in a vacuum environment to enable high-resolution imaging and accurate analysis of semiconductor structures and defects.

7. Leak Detection: Vacuum pumps are employed in leak detection systems to identify and locate leaks in vacuum chambers, process lines, and other components. These systems rely on vacuum pumps to evacuate the system and then monitor for any pressure rise, indicating the presence of leaks.

8. Cleanroom Environment Control: Semiconductor manufacturing facilities maintain cleanroom environments to prevent contamination during the fabrication process. Vacuum pumps are used in the design and operation of the cleanroom ventilation and filtration systems, helping to maintain the required air cleanliness levels by removing particulates and maintaining controlled air pressure differentials.

Vacuum pumps used in semiconductor manufacturing processes are often specialized to meet the stringent requirements of the industry. They need to provide high vacuum levels, precise control, low contamination levels, and reliability for continuous operation.

Overall, vacuum pumps are indispensable in semiconductor manufacturing, enabling the creation of the necessary vacuum conditions for various processes, ensuring the production of high-quality semiconductor devices.

vacuum pump

How Do Vacuum Pumps Contribute to Energy Savings?

Vacuum pumps play a significant role in energy savings in various industries and applications. Here’s a detailed explanation:

Vacuum pumps contribute to energy savings through several mechanisms and efficiencies. Some of the key ways in which vacuum pumps help conserve energy are:

1. Improved Process Efficiency: Vacuum pumps are often used to remove gases and create low-pressure or vacuum conditions in industrial processes. By reducing the pressure, vacuum pumps enable the removal of unwanted gases or vapors, improving the efficiency of the process. For example, in distillation or evaporation processes, vacuum pumps help lower the boiling points of liquids, allowing them to evaporate or distill at lower temperatures. This results in energy savings as less heat is required to achieve the desired separation or concentration.

2. Reduced Energy Consumption: Vacuum pumps are designed to operate efficiently and consume less energy compared to other types of equipment that perform similar functions. Modern vacuum pump designs incorporate advanced technologies, such as variable speed drives, energy-efficient motors, and optimized control systems. These features allow vacuum pumps to adjust their operation based on demand, reducing energy consumption during periods of lower process requirements. By consuming less energy, vacuum pumps contribute to overall energy savings in industrial operations.

3. Leak Detection and Reduction: Vacuum pumps are often used in leak detection processes to identify and locate leaks in systems or equipment. By creating a vacuum or low-pressure environment, vacuum pumps can assess the integrity of a system and identify any sources of leakage. Detecting and repairing leaks promptly helps prevent energy wastage associated with the loss of pressurized fluids or gases. By addressing leaks, vacuum pumps assist in reducing energy losses and improving the overall energy efficiency of the system.

4. Energy Recovery Systems: In some applications, vacuum pumps can be integrated into energy recovery systems. For instance, in certain manufacturing processes, the exhaust gases from vacuum pumps may contain heat or have the potential for energy recovery. By utilizing heat exchangers or other heat recovery systems, the thermal energy from the exhaust gases can be captured and reused to preheat incoming fluids or provide heat to other parts of the process. This energy recovery approach further enhances the overall energy efficiency by utilizing waste heat that would otherwise be lost.

5. System Optimization and Control: Vacuum pumps are often integrated into centralized vacuum systems that serve multiple processes or equipment. These systems allow for better control, monitoring, and optimization of the vacuum generation and distribution. By centralizing the vacuum production and employing intelligent control strategies, energy consumption can be optimized based on the specific process requirements. This ensures that vacuum pumps operate at the most efficient levels, resulting in energy savings.

6. Maintenance and Service: Proper maintenance and regular servicing of vacuum pumps are essential for their optimal performance and energy efficiency. Routine maintenance includes tasks such as cleaning, lubrication, and inspection of pump components. Well-maintained pumps operate more efficiently, reducing energy consumption. Additionally, prompt repair of any faulty parts or addressing performance issues helps maintain the pump’s efficiency and prevents energy waste.

In summary, vacuum pumps contribute to energy savings through improved process efficiency, reduced energy consumption, leak detection and reduction, integration with energy recovery systems, system optimization and control, as well as proper maintenance and service. By utilizing vacuum pumps efficiently and effectively, industries can minimize energy waste, optimize energy usage, and achieve significant energy savings in various applications and processes.

vacuum pump

What Is a Vacuum Pump, and How Does It Work?

A vacuum pump is a mechanical device used to create and maintain a vacuum or low-pressure environment within a closed system. Here’s a detailed explanation:

A vacuum pump operates on the principle of removing gas molecules from a sealed chamber, reducing the pressure inside the chamber to create a vacuum. The pump accomplishes this through various mechanisms and techniques, depending on the specific type of vacuum pump. Here are the basic steps involved in the operation of a vacuum pump:

1. Sealed Chamber:

The vacuum pump is connected to a sealed chamber or system from which air or gas molecules need to be evacuated. The chamber can be a container, a pipeline, or any other enclosed space.

2. Inlet and Outlet:

The vacuum pump has an inlet and an outlet. The inlet is connected to the sealed chamber, while the outlet may be vented to the atmosphere or connected to a collection system to capture or release the evacuated gas.

3. Mechanical Action:

The vacuum pump creates a mechanical action that removes gas molecules from the chamber. Different types of vacuum pumps use various mechanisms for this purpose:

– Positive Displacement Pumps: These pumps physically trap gas molecules and remove them from the chamber. Examples include rotary vane pumps, piston pumps, and diaphragm pumps.

– Momentum Transfer Pumps: These pumps use high-speed jets or rotating blades to transfer momentum to gas molecules, pushing them out of the chamber. Examples include turbomolecular pumps and diffusion pumps.

– Entrapment Pumps: These pumps capture gas molecules by adsorbing or condensing them on surfaces or in materials within the pump. Cryogenic pumps and ion pumps are examples of entrainment pumps.

4. Gas Evacuation:

As the vacuum pump operates, it creates a pressure differential between the chamber and the pump. This pressure differential causes gas molecules to move from the chamber to the pump’s inlet.

5. Exhaust or Collection:

Once the gas molecules are removed from the chamber, they are either exhausted into the atmosphere or collected and processed further, depending on the specific application.

6. Pressure Control:

Vacuum pumps often incorporate pressure control mechanisms to maintain the desired level of vacuum within the chamber. These mechanisms can include valves, regulators, or feedback systems that adjust the pump’s operation to achieve the desired pressure range.

7. Monitoring and Safety:

Vacuum pump systems may include sensors, gauges, or indicators to monitor the pressure levels, temperature, or other parameters. Safety features such as pressure relief valves or interlocks may also be included to protect the system and operators from overpressure or other hazardous conditions.

It’s important to note that different types of vacuum pumps have varying levels of vacuum they can achieve and are suitable for different pressure ranges and applications. The choice of vacuum pump depends on factors such as the required vacuum level, gas composition, pumping speed, and the specific application’s requirements.

In summary, a vacuum pump is a device that removes gas molecules from a sealed chamber, creating a vacuum or low-pressure environment. The pump accomplishes this through mechanical actions, such as positive displacement, momentum transfer, or entrapment. By creating a pressure differential, the pump evacuates gas from the chamber, and the gas is either exhausted or collected. Vacuum pumps play a crucial role in various industries, including manufacturing, research, and scientific applications.

China Professional Laboratory Equipment Oilless Small Diaphragm Vacuum Pump   vacuum pump electricChina Professional Laboratory Equipment Oilless Small Diaphragm Vacuum Pump   vacuum pump electric
editor by CX 2024-04-02